292 research outputs found

    Experience with an ultrasound donation program in a low-income country

    Get PDF
    Increasing radiology capacity in low-income countries (LIC) can improve clinicians’ access to diagnostic imaging tools and improve patient care. Ultrasound (US) is important in LIC due to its lower cost compared to that of CT or MRI scans and its excellent diagnostic ability. The relative portability of the equipment makes it ideal for donation by charitable organizations. We describe our experience as a radiology-capacity-focused charity working with the Haitian healthcare system and propose strategies to increase ultrasound capacity in other poor countries

    Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mSystems 1 (2015): e00009-15, doi:10.1128/mSystems.00009-15.Designing primers for PCR-based taxonomic surveys that amplify a broad range of phylotypes in varied community samples is a difficult challenge, and the comparability of data sets amplified with varied primers requires attention. Here, we examined the performance of modified 16S rRNA gene and internal transcribed spacer (ITS) primers for archaea/bacteria and fungi, respectively, with nonaquatic samples. We moved primer bar codes to the 5′ end, allowing for a range of different 3′ primer pairings, such as the 515f/926r primer pair, which amplifies variable regions 4 and 5 of the 16S rRNA gene. We additionally demonstrated that modifications to the 515f/806r (variable region 4) 16S primer pair, which improves detection of Thaumarchaeota and clade SAR11 in marine samples, do not degrade performance on taxa already amplified effectively by the original primer set. Alterations to the fungal ITS primers did result in differential but overall improved performance compared to the original primers. In both cases, the improved primers should be widely adopted for amplicon studies.J.A.F. and A.P. are supported by the Gordon and Betty Moore Foundation (GMBF3779) and NSF grant 1136818. A.P. is supported by an NSF Graduate Fellowship. A.A. is supported by NSF grant OCE-1233612. J.K.J. is supported by the Microbiomes in Transition Initiative LDRD Program at the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the DOE under contract DE-AC06-76RL01830. J.A.G. is supported by the U.S. Department of Energy under contract DE-AC02-06CH11357. J.G.C., J.A.G., and R.K. are supported by the Alfred P. Sloan Foundation. R.K. is supported by the Howard Hughes Medical Institute

    Identifying schizophrenia patients who carry pathogenic genetic copy number variants using standard clinical assessment: retrospective cohort study

    Get PDF
    Background Copy number variants (CNVs) play a significant role in disease pathogenesis in a small subset of individuals with schizophrenia (~2.5%). Chromosomal microarray testing is a first-tier genetic test for many neurodevelopmental disorders. Similar testing could be useful in schizophrenia. Aims To determine whether clinically identifiable phenotypic features could be used to successfully model schizophrenia-associated (SCZ-associated) CNV carrier status in a large schizophrenia cohort. Method Logistic regression and receiver operating characteristic (ROC) curves tested the accuracy of readily identifiable phenotypic features in modelling SCZ-associated CNV status in a discovery data-set of 1215 individuals with psychosis. A replication analysis was undertaken in a second psychosis data-set (n = 479). Results In the discovery cohort, specific learning disorder (OR = 8.12; 95% CI 1.16–34.88, P = 0.012), developmental delay (OR = 5.19; 95% CI 1.58–14.76, P = 0.003) and comorbid neurodevelopmental disorder (OR = 5.87; 95% CI 1.28–19.69, P = 0.009) were significant independent variables in modelling positive carrier status for a SCZ-associated CNV, with an area under the ROC (AUROC) of 74.2% (95% CI 61.9–86.4%). A model constructed from the discovery cohort including developmental delay and comorbid neurodevelopmental disorder variables resulted in an AUROC of 83% (95% CI 52.0–100.0%) for the replication cohort. Conclusions These findings suggest that careful clinical history taking to document specific neurodevelopmental features may be informative in screening for individuals with schizophrenia who are at higher risk of carrying known SCZ-associated CNVs. Identification of genomic disorders in these individuals is likely to have clinical benefits similar to those demonstrated for other neurodevelopmental disorders

    Long-Term Functionality of Rural Water Services in Developing Countries: A System Dynamics Approach to Understanding the Dynamic Interaction of Causal Factors

    Full text link
    Research has shown that sustainability of rural water infrastructure in developing countries is largely affected by the dynamic and systemic interactions of technical, social, financial, institutional, and environmental factors that can lead to premature water system failure. This research employs systems dynamic modeling, which uses feedback mechanisms to understand how these factors interact dynamically to influence long-term rural water system functionality. To do this, the research first identified and aggregated key factors from literature, then asked water sector experts to indicate the polarity and strength between factors through Delphi and cross impact survey questionnaires, and finally used system dynamics modeling to identify and prioritize feedback mechanisms. The resulting model identified 101 feedback mechanisms that were dominated primarily by three and four-factor loops that contained some combination of the factors: Water System Functionality, Community, Financial, Government, Management, and Technology. These feedback mechanisms were then scored and prioritized, with the most dominant feedback mechanism identified as Water System Functionality – Community – Finance – Management. This research offers insight into the dynamic interaction of factors impacting sustainability of rural water infrastructure through the identification of these feedback mechanisms and makes a compelling case for future research to longitudinally investigate the interaction of these factors in various contexts

    Sex-specific Aging in Animals: Perspective and Future Directions

    Get PDF
    Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs

    Sex-specific aging in animals: Perspective and future directions

    Get PDF
    Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age‐associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer‐lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well‐characterized processes. In particular, understanding the role of sex‐determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes

    Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection

    Get PDF
    Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide such insight. We report the largest single cohort genome-wide association study of schizophrenia (11,260 cases and 24,542 controls) and through meta-analysis with existing data we identify 50 novel GWAS loci. Using gene-wide association statistics we implicate an additional set of 22 novel associations that map onto a single gene. We show for the first time that the common variant association signal is highly enriched among genes that are intolerant to loss of function mutations and that variants in these genes persist in the population despite the low fecundity associated with the disorder through the process of background selection. Associations point to novel areas of biology (e.g. metabotropic GABA-B signalling and acetyl cholinesterase), reinforce those implicated in earlier GWAS studies (e.g. calcium channel function), converge with earlier rare variants studies (e.g. NRXN1, GABAergic signalling), identify novel overlaps with autism (e.g. RBFOX1, FOXP1, FOXG1), and support early controversial candidate gene hypotheses (e.g. ERBB4 implicating neuregulin signalling). We also demonstrate the involvement of six independent central nervous system functional gene sets in schizophrenia pathophysiology. These findings provide novel insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation intolerant genes and suggest a mechanism by which common risk variants are maintained in the population

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
    corecore