304 research outputs found
Entire solutions of hydrodynamical equations with exponential dissipation
We consider a modification of the three-dimensional Navier--Stokes equations
and other hydrodynamical evolution equations with space-periodic initial
conditions in which the usual Laplacian of the dissipation operator is replaced
by an operator whose Fourier symbol grows exponentially as \ue ^{|k|/\kd} at
high wavenumbers . Using estimates in suitable classes of analytic
functions, we show that the solutions with initially finite energy become
immediately entire in the space variables and that the Fourier coefficients
decay faster than \ue ^{-C(k/\kd) \ln (|k|/\kd)} for any . The
same result holds for the one-dimensional Burgers equation with exponential
dissipation but can be improved: heuristic arguments and very precise
simulations, analyzed by the method of asymptotic extrapolation of van der
Hoeven, indicate that the leading-order asymptotics is precisely of the above
form with . The same behavior with a universal constant
is conjectured for the Navier--Stokes equations with exponential
dissipation in any space dimension. This universality prevents the strong
growth of intermittency in the far dissipation range which is obtained for
ordinary Navier--Stokes turbulence. Possible applications to improved spectral
simulations are briefly discussed.Comment: 29 pages, 3 figures, Comm. Math. Phys., in pres
Analysis of Ductile Bursting in Pressure Vessels of Texture-Hardening and Filament-Wrapped Materials
Analyses are presented for predicting the strength governed by the plastic tensile instability (PTI) phenomenon in thin-walled cylindrical and spherical pressure vessels constructed of texture- hardening alloys and with or without over-wrapped filaments. These analyses are important in predicting ductile bursting of pressure vessels used in such high-performance applications as high-pressure storage bottles, liquid-propellant tankage, and solid rocket casings. The analyses cover cylindrical pressure vessels subject to any ratio of biaxial stresses. Also means of estimating the effect of finite length is presented. Spherical vessels of texture- hardening material and cylindrical vessels with filaments over wrapped on a texture-hardening metallic substrate are treated as special cases. The analytical results are compared with available experimental results with good success.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Observing the First Stars and Black Holes
The high sensitivity of JWST will open a new window on the end of the
cosmological dark ages. Small stellar clusters, with a stellar mass of several
10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun
should be directly detectable out to redshift z=10, and individual supernovae
(SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible
beyond this redshift. Dense primordial gas, in the process of collapsing from
large scales to form protogalaxies, may also be possible to image through
diffuse recombination line emission, possibly even before stars or BHs are
formed. In this article, I discuss the key physical processes that are expected
to have determined the sizes of the first star-clusters and black holes, and
the prospect of studying these objects by direct detections with JWST and with
other instruments. The direct light emitted by the very first stellar clusters
and intermediate-mass black holes at z>10 will likely fall below JWST's
detection threshold. However, JWST could reveal a decline at the faint-end of
the high-redshift luminosity function, and thereby shed light on radiative and
other feedback effects that operate at these early epochs. JWST will also have
the sensitivity to detect individual SNe from beyond z=10. In a dedicated
survey lasting for several weeks, thousands of SNe could be detected at z>6,
with a redshift distribution extending to the formation of the very first stars
at z>15. Using these SNe as tracers may be the only method to map out the
earliest stages of the cosmic star-formation history. Finally, we point out
that studying the earliest objects at high redshift will also offer a new
window on the primordial power spectrum, on 100 times smaller scales than
probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and
Concurrent Facilities", Astrophysics & Space Science Library, Eds. H.
Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows
This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions
For the Progress of “Faustus and Helen”: Crane, Whitman, and the Metropolitan Progress Poem
This essay is meant to invigorate a critical discussion of the progress poem—a genre that, while prevalent in American literature, has been virtually ignored by critics and scholars. In lieu of tackling the genre in its entirety, a project too large for just one article, the author focuses the argument through the well-known alignment between Walt Whitman and Hart Crane on the subject of the modern city. It is through the progress poem genre that Crane and Whitman’s peculiar place in metropolitan poetics can best be understood, and it is through their poetry that scholars can begin to approach the broader issue of the progress poem’s place in American literature.
Cet article vise à soulever un débat critique au sujet de la poésie du progrès, un genre courant dans la littérature étatsunienne, mais pratiquement ignoré par les critiques et les commentateurs. Plutôt que d’aborder le genre dans son entièreté – un projet qui déborde du cadre d’un article –, l’auteur resserre l’argumentation autour du parallèle bien connu entre Walt Whitman et Hart Crane concernant le traitement de la ville moderne. C’est la poésie du progrès en tant que genre qui permet le mieux de comprendre la place particulière qu’occupent ces deux auteurs dans la poésie métropolitaine, et c’est par leurs poèmes que les chercheurs peuvent aborder la question plus vaste de la place du poème sur le progrès dans la littérature étatsunienne
Sociocultural considerations in aging men's health: implications and recommendations for the clinician
http://dx.doi.org/10.1016/j.jomh.2009.07.00
Data from a pre-publication independent replication initiative examining ten moral judgement effects
We present the data from a crowdsourced project seeking to replicate findings in independent laboratories before (rather than after) they are published. In this Pre-Publication Independent Replication (PPIR) initiative, 25 research groups attempted to replicate 10 moral judgment effects from a single laboratory's research pipeline of unpublished findings. The 10 effects were investigated using online/lab surveys containing psychological manipulations (vignettes) followed by questionnaires. Results revealed a mix of reliable, unreliable, and culturally moderated findings. Unlike any previous replication project, this dataset includes the data from not only the replications but also from the original studies, creating a unique corpus that researchers can use to better understand reproducibility and irreproducibility in science
- …