700 research outputs found
Current-Dependent Exchange-Correlation Potential for Dynamical Linear Response Theory
URL:http://link.aps.org/doi/10.1103/PhysRevLett.77.2037
DOI:10.1103/PhysRevLett.77.2037The frequency-dependent exchange-correlation potential, which appears in the usual Kohn- Sham formulation of a time-dependent linear response problem, is a strongly nonlocal functional of the density, so that a consistent local density approximation generally does not exist. This problem can be avoided by choosing the current density as the basic variable in a generalized Kohn-Sham theory. This theory admits a local approximation which, for fixed frequency, is exact in the limit of slowly varying densities and perturbing potentials.We acknowledge support from NSF Grants No. DMR-
9403908 and No. DMR-9308011
Edge Electron Gas
The uniform electron gas, the traditional starting point for density-based
many-body theories of inhomogeneous systems, is inappropriate near electronic
edges. In its place we put forward the appropriate concept of the edge electron
gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in
title,text and figure
Stable isotope evidence for crustal recycling as recorded by superdeep diamonds
© 2015 Elsevier B.V. Sub-lithospheric diamonds from the Juina-5 and Collier-4 kimberlites and the Machado River alluvial deposit in Brazil have carbon isotopic compositions that co-vary with the oxygen isotopic compositions of their inclusions, which implies that they formed by a mixing process. The proposed model for this mixing process, based on interaction of slab-derived carbonate melt with reduced (carbide- or metal-bearing) ambient mantle, explains these isotopic observations. It is also consistent with the observed trace element chemistries of diamond inclusions from these localities and with the experimental phase relations of carbonated subducted crust. The 18O-enriched nature of the inclusions demonstrates that they incorporate material from crustal protoliths that previously interacted with seawater, thus confirming the subduction-related origin of superdeep diamonds. These samples also provide direct evidence of an isotopically anomalous reservoir in the deep (≥350 km) mantle
Band structure analysis of the conduction-band mass anisotropy in 6H and 4H SiC
The band structures of 6H and 4H SiC calculated by means of the FP-LMTO
method are used to determine the effective mass tensors for their
conduction-band minima. The results are shown to be consistent with recent
optically detected cyclotron resonance measurements and predict an unusual band
filling dependence for 6H-SiC.Comment: 5 pages including 4 postscript figures incorporated with epsfig figs.
available as part 2: sicfig.uu self-extracting file to appear in Phys. Rev.
B: Aug. 15 (Rapid Communications
Statistical mechanics of Floquet systems: the pervasive problem of near degeneracies
The statistical mechanics of periodically driven ("Floquet") systems in
contact with a heat bath exhibits some radical differences from the traditional
statistical mechanics of undriven systems. In Floquet systems all quasienergies
can be placed in a finite frequency interval, and the number of near
degeneracies in this interval grows without limit as the dimension N of the
Hilbert space increases. This leads to pathologies, including drastic changes
in the Floquet states, as N increases. In earlier work these difficulties were
put aside by fixing N, while taking the coupling to the bath to be smaller than
any quasienergy difference. This led to a simple explicit theory for the
reduced density matrix, but with some major differences from the usual time
independent statistical mechanics. We show that, for weak but finite coupling
between system and heat bath, the accuracy of a calculation within the
truncated Hilbert space spanned by the N lowest energy eigenstates of the
undriven system is limited, as N increases indefinitely, only by the usual
neglect of bath memory effects within the Born and Markov approximations. As we
seek higher accuracy by increasing N, we inevitably encounter quasienergy
differences smaller than the system-bath coupling. We therefore derive the
steady state reduced density matrix without restriction on the size of
quasienergy splittings. In general, it is no longer diagonal in the Floquet
states. We analyze, in particular, the behavior near a weakly avoided crossing,
where quasienergy near degeneracies routinely appear. The explicit form of our
results for the denisty matrix gives a consistent prescription for the
statistical mechanics for many periodically driven systems with N infinite, in
spite of the Floquet state pathologies.Comment: 31 pages, 3 figure
Time Dependent Floquet Theory and Absence of an Adiabatic Limit
Quantum systems subject to time periodic fields of finite amplitude, lambda,
have conventionally been handled either by low order perturbation theory, for
lambda not too large, or by exact diagonalization within a finite basis of N
states. An adiabatic limit, as lambda is switched on arbitrarily slowly, has
been assumed. But the validity of these procedures seems questionable in view
of the fact that, as N goes to infinity, the quasienergy spectrum becomes
dense, and numerical calculations show an increasing number of weakly avoided
crossings (related in perturbation theory to high order resonances). This paper
deals with the highly non-trivial behavior of the solutions in this limit. The
Floquet states, and the associated quasienergies, become highly irregular
functions of the amplitude, lambda. The mathematical radii of convergence of
perturbation theory in lambda approach zero. There is no adiabatic limit of the
wave functions when lambda is turned on arbitrarily slowly. However, the
quasienergy becomes independent of time in this limit. We introduce a
modification of the adiabatic theorem. We explain why, in spite of the
pervasive pathologies of the Floquet states in the limit N goes to infinity,
the conventional approaches are appropriate in almost all physically
interesting situations.Comment: 13 pages, Latex, plus 2 Postscript figure
Stable isotope evidence for crustal recycling as recorded by superdeep diamonds
Sub-lithospheric diamonds from the Juina-5 and Collier-4 kimberlites and the Machado River alluvial deposit in Brazil have carbon isotopic compositions that co-vary with the oxygen isotopic compositions of their inclusions, which implies that they formed by a mixing process. The proposed model for this mixing process, based on interaction of slab-derived carbonate melt with reduced (carbide- or metal-bearing) ambient mantle, explains these isotopic observations. It is also consistent with the observed trace element chemistries of diamond inclusions from these localities and with the experimental phase relations of carbonated subducted crust. The 18O-enriched nature of the inclusions demonstrates that they incorporate material from crustal protoliths that previously interacted with seawater, thus confirming the subduction-related origin of superdeep diamonds. These samples also provide direct evidence of an isotopically anomalous reservoir in the deep (≥350 km) mantle
Structure of liquid tricalcium aluminate
International audienceThe atomic-scale structure of aerodynamically levitated and laser-heated liquid tricalcium aluminate (Ca 3 Al 2 O 6) was measured at 2073(30) K by using the method of neutron diffraction with Ca isotope substitution (NDIS). The results enable the detailed resolution of the local coordination environment around calcium and aluminum atoms, including the direct determination of the liquid partial structure factor, S CaCa (Q), and partial pair distribution function, g CaCa (r). Molecular dynamics (MD) simulation and reverse Monte Carlo (RMC) refinement methods were employed to obtain a detailed atomistic model of the liquid structure. The composition Ca 3 Al 2 O 6 lies at the CaO-rich limit of the CaO:Al 2 O 3 glass-forming system. Our results show that, although significantly depolymerized, liquid Ca 3 Al 2 O 6 is largely composed of AlO 4 tetrahedra forming an infinite network with a slightly higher fraction of bridging oxygen atoms than expected for the composition. Calcium-centered polyhedra exhibit a wide distribution of four-to sevenfold coordinated sites, with higher coordinated calcium preferentially bonding to bridging oxygens. Analysis of the MD configuration reveals the presence of ∼10 % unconnected AlO 4 monomers and Al 2 O 7 dimers in the liquid. As the CaO concentration increases, the number of these isolated units increases, such that the upper value for the glass-forming composition of CaO:Al 2 O 3 liquids could be described in terms of a percolation threshold at which the glass can no longer support the formation of an infinitely connected AlO 4 network
- …
