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Abstract 

Sub-lithospheric diamonds from the Juina-5 and Collier-4 kimberlites and the Machado River alluvial 

deposit in Brazil have carbon isotopic compositions that co-vary with the oxygen isotopic compositions 

of their inclusions, which implies that they formed by a mixing process. The proposed model for this 

mixing process, based on interaction of slab-derived carbonate melt with reduced (carbide- or metal-

bearing) ambient mantle, explains these isotopic observations. It is also consistent with the observed 

trace element chemistries of diamond inclusions from these localities and with the experimental phase 

relations of carbonated subducted crust. The 
18

O-enriched nature of the inclusions demonstrates that 

they incorporate material from crustal protoliths that previously interacted with seawater, thus 

confirming the subduction-related origin of superdeep diamonds. These samples also provide direct 

evidence of an isotopically anomalous reservoir in the deep (≥ 350 km) mantle. 

 

1. Introduction 

Diamonds, the deepest-derived mineral grains available for scientific study, have long been used to 

provide insights into the nature of the mantle and chemical processes in the deep Earth. A key indicator 

of diamond provenance is the mineralogy and composition of trapped inclusions, the majority of which 

indicate diamond formation in the lithospheric mantle; a small proportion (<5 %) of diamonds formed at 

much higher pressures, deep in the asthenospheric upper mantle or even the lower mantle (Stachel et al., 

2005; Walter et al., 2011; Kaminsky, 2012).  

 

mailto:antony.burnham@anu.edu.au


Subduction of oceanic lithosphere returns material (sea-floor sediments, altered lavas and depleted 

mantle rocks) from the Earth’s surface to the mantle. The fate of the various subducted lithologies 

remains enigmatic, with questions still unanswered regarding the extent to which these materials might 

be decoupled, how deep material descends into the mantle, and the extent to which subducted material is 

isolated from the convecting mantle. For example, subducted crust may be incorporated into the sub-

cratonic lithosphere as demonstrated by mantle xenoliths and diamonds transported to the surface by 

kimberlite eruptions worldwide (Jacob, 2004), or it may mix back into the mantle as suggested by 

seismic tomography showing slabs stalled at the 660 km discontinuity and even penetrating into the 

lower mantle (Widiyantoro et al., 1999). 

 

Oxygen isotopes are a powerful tracer of crustal material, only being fractionated significantly at low 

temperatures (Bindeman, 2008). Hence, any value outside a narrow “peridotitic mantle” range, 

δ
18

OSMOW = 5.7 ± 0.2 ‰, is diagnostic of a shallow crustal origin. For example, δ
18

O values lie in the 

range 11-21 ‰ for mudrocks (Land and Lynch, 1996), 20-35 ‰ for marine limestones (Land and 

Lynch, 1996) and 3-15 ‰ for altered basaltic lavas (Gregory and Taylor, 1981). Studies of the oxygen 

isotopic compositions of silicates (Lowry et al., 1999; Schulze et al., 2004; Ickert et al., 2013; Schulze et 

al., 2013) and the sulphur isotopic ratios of sulphides (Farquhar et al., 2002) within lithospheric 

diamonds testify to the subducted origin of some mineral inclusions in lithospheric diamonds. The 

isotopic composition of C in diamond similarly has a narrow isotopic range within typical peridotitic 

mantle, with δ
13

CPDB around -5 ± 1 ‰ (Ickert et al., 2013). Lithospheric diamonds hosting eclogitic 

silicate inclusions often show a co-variation between the δ
13

C of the former and the δ
18

O of the latter, as 

shown in Figure 1 (Lowry et al., 1999; Ickert et al., 2013; Schulze et al., 2013). Such examples indicate 

that not all subducted material is recycled back into the convecting mantle, but can instead be 

incorporated into or accreted onto the lithospheric mantle. Those rare “superdeep” diamonds that 

originate in the convecting mantle beneath the lithosphere provide a direct insight into the mineralogy 

and geochemistry of the deep mantle. Ickert et al. (2015) reported the O isotopic compositions of 

majorite inclusions in diamonds from South Africa (the Jagersfontein kimberlite). As with lithospheric 



eclogitic inclusions from other localities worldwide, these are enriched in δ
18

O (Fig. 1), indicative of the 

crustal nature of the protolith. 

 

Here we report the relationship between δ
13

C and δ
18

O for superdeep diamonds from Brazil (the Juina-5 

and Collier-4 kimberlites; Bulanova et al., 2010; Walter et al., 2011; Thomson et al., 2014 and the 

Machado River alluvial deposit; Bulanova et al., 2008). We use these data to test the hypothesis that 

many superdeep diamonds are formed from recycled material. Additionally we assess the extent to 

which isotopic signatures of crustal materials are maintained throughout their passage into the deep 

mantle, rather than being removed and re-homogenised during the subduction process that includes 

dehydration and sediment melting. Although the suites of diamonds studied contain a wide variety of 

deep upper mantle minerals, the calibration of δ
18

O by ion probe secondary ion mass spectroscopy 

(SIMS) varies considerably and unpredictably between minerals. Because of this limitation, only 

coesite, CaSiO3-walstromite and garnet were analysed. 

 

2. Methods 

Inclusion-bearing diamonds were polished to expose the inclusions at the surface, mounted in indium 

and gold-coated. Mineral structures were verified by Raman spectroscopy using a Thermo Scientific 

DXRxi microscope equipped with a 455 or 532 nm excitation laser. Panchromatic cathodoluminescence 

(CL) images were recorded using a Hitachi S-3500N scanning electron microscope. Backscattered 

electron imaging and electron probe microanalysis of the major element composition were performed 

using a JEOL JXA8530F Hyperprobe operating at 20 kV and 3 nA (imaging) or 20 nA (compositional 

analysis by wavelength dispersive spectroscopy).  

 

SIMS analysis of carbon and oxygen isotopic ratios was carried out at the Edinburgh Ion Microprobe 

Facility (EIMF) using a Cameca 1270 mass spectrometer operating at 10 kV and 6 nA primary Cs
+
 

beam current. Electron flooding minimised charge build-up during the measurement of O isotope ratios. 

In-house standards were used for calibration and drift correction. The standard for diamond was 

synthetic diamond SYN (δ
13

C = -23.9 ‰), that used for coesite was Bogala quartz (δ
18

O = 12.3 ‰; there 



is no instrumental mass fractionation (IMF) difference between quartz and coesite, Schulze et al., 2003) 

and for CaSiO3 a synthetic Ca-walstromite was prepared at 3.1 GPa and 1580 °C in a piston cylinder 

apparatus, and characterised for δ
18

O by laser fluorination at SUERC as δ
18

O = 21.0 ± 0.4 ‰ (1σ, n = 

4). For garnet a set of 10 standards of known δ
18

O were analysed to provide a working curve for the 

instrumental mass fractionation as a function of composition, with garnet 13-63-44 (Page et al., 2010) 

analysed throughout the session to monitor instrument drift. δ
18

O was parameterised as a quadratic 

function of the Ca content of the garnet (Page et al., 2010). For the first analytical session this gave 

δ
18

Osample = δ
18

Odrift corrected + 0.652*(XCa)
2
 – 2.98*(XCa) + 1.34, which had a mean deviation from the 

observed IMF of 0.23 ‰. The larger garnet in ColN-18 was analysed the following day, on which 

occasion the IMF was ~ 0.29 ‰ smaller. However, the relative IMFs of the garnets studied were in 

excellent agreement with previous measurements made at EIMF using similar instrumental setup and 

differed only in the constant in the IMF equation, and hence this analysis was corrected using δ
18

Osample 

= δ
18

Odrift corrected + 0.652*(XCa)
2
 – 2.98*(XCa) + 1.05. The standards available contained negligible Na 

and Ti which, respectively, are present at up to 0.19 and 0.09 atoms per formula unit (12 oxygens) in the 

diamond inclusions. Treating the Na component as identical to Ca for the diamond inclusions would 

result in δ
18

Osample values that were lower by at most 0.39 ‰ (mean = 0.19 ‰) and therefore the neglect 

of this component is probably not significant. The Ti component of the garnet is lower than that of Na, 

and was ignored. Overall, we estimate the uncertainty of our garnet measurements as the combination of 

the spot-to-spot reproducibility, 0.15 ‰ (an average of 0.18 ‰ for the drift-affected morning session (n 

= 25) and 0.13 ‰ for the more stable afternoon session (n = 20)), and the mean deviation of the IMF-

corrected measurements from the accepted values for those materials, 0.23 ‰. Therefore we consider 

the 1σ uncertainty for the garnet δ
18

O measurements to be 0.28 ‰. For coesite the spot-to-spot 1σ 

uncertainty was 0.14 ‰. For CaSiO3 the uncertainty is dominated by the apparent inhomogeneity of the 

standard. This was tested in two sessions. During the first the spot-to spot reproducibility was 0.63 ‰ (n 

= 40) and during the second it was 0.57 ‰ (n = 20); excluding two markedly different values from the 

first session and one from the second improves the spot-to spot reproducibility to 0.44 ‰ and 0.31 ‰ 

respectively. These extreme outliers are probably related to the presence of decompression cracks within 

the synthetic material. The uncertainty on the laser fluorination value for the synthetic Ca-walstromite is 



~ 0.37 ‰; combining this with the average reproducibility on the standard (0.38 ‰) gives an overall 

uncertainty of 0.53 ‰. 

 

CL images were obtained after SIMS analysis to determine the internal structures of the samples and to 

verify the location of analytical points within the growth zones of the diamonds. 

 

3. Results 

The diamonds and inclusions studied are summarised in Table 1. EPMA data for the garnets are given in 

Table 2. The coesite inclusions are almost pure SiO2 with trace amounts (< 0.06 wt%) of Al2O3 and 

TiO2; the Ca-walstromite is almost pure endmember CaSiO3 with other components comprising < 0.8% 

by weight (Table 3). Coesite with exsolved kyanite (Fig. 2a) probably formed as stishovite, which can 

accommodate much higher Al concentrations than other SiO2 polymorphs (Liu et al., 2007), and must 

have formed at pressures above ~ 9 GPa (Zhang et al., 1993), equivalent to a minimum crystallisation 

depth of 270 km. The garnets have eclogitic compositions with a majoritic component and often have a 

rim of exsolved clinopyroxene (Fig. 2b). Several Ca-walstromite grains contain a small proportion (< 10 

%) of exsolved CaTiO3 grains (Fig. 2c), implying formation as Ca(Si,Ti)O3 perovskite at pressures 

above ~ 12 GPa (Kubo et al., 1997). Minimum formation depths for the inclusions are taken to be 270 

km for coesite, 230 km for garnet and 360 km for Ca-walstromite. The concentration of N in the 

diamonds, where measured, is typically low, and cathodoluminescence images (Fig. 3) show complex, 

diffuse internal zonation textures that are suggestive of a superdeep origin (Bulanova et al. 2010). All 

lines of evidence point to a related, sub-lithospheric, origin for the diamonds studied. The diamonds 

have δ
13

C values from -26.4 ± 0.1 to -2.8 ± 0.1 ‰ and all measurements are consistent with previously 

published data for these and other samples from the same localities (Bulanova et al. 2008, 2010, 

Thomson et al., 2014). Mineral inclusion δ
18

O values range from 7.5 ± 0.3 to 12.9 ± 0.3 ‰ and are anti-

correlated with δ
13

C of the host diamonds (Fig. 4); the ranges for all minerals overlap. 

 

4. Discussion 



Equilibrium oxygen isotope fractionation between coesite (and presumably stishovite) and garnet at 

temperatures above 1200 °C is below 1 ‰ (Sharp et al., 1992) and hence all inclusions are considered to 

be equally representative of the original lithology; likewise, exsolution is not expected to affect the δ
18

O 

of the analysed phases. δ
18

O values for all samples are significantly above the normal mantle range but 

within the range for crustal materials, and are at the higher end of the range of those previously obtained 

from eclogitic inclusions in lithospheric diamonds. Such high values suggest that the inclusions 

represent exceptionally well-preserved former crustal material that has survived isotopic modification to 

> 350 km depth. 

 

Trace element data and phase relations suggest the Juina-region superdeep diamonds formed from melt 

released during partial melting of a carbonated slab at depths of 300-800 km (Walter et al., 2008; 

Bulanova et al, 2010). At these depths the mantle is highly reduced, with native Fe and/or Fe-carbide 

(e.g. Fe3C or Fe7C3) present; the oxidised, carbonate-rich melts escaping from a subducted slab are 

expected to react with these reduced minerals in a “redox freezing” mechanism (Rohrbach and Schmidt, 

2011): 

3 MgCO3 + 2 Fe3C = 9 
2

67.0Fe Mg0.33O + 5 C 

in melt  carbide  in silicates  diamond 

and 

MgCO3 + 2 Fe = 3 
2

67.0Fe Mg0.33O + C 

in melt  metal  in silicates  diamond 

These reactions have several consequences. (i) Removal of carbonate from the melt dramatically raises 

its solidus, causing the other components of the melt (predominantly SiO2+MgO+CaO+Na2O) to 

crystallise out rapidly. (ii) FeO produced by the reaction will be incorporated into ferromagnesian 

mineral solid solutions such as garnet, bridgmanite and ferropericlase/magnesiowüstite. (iii) Isotopically 

light carbon (δ
13

C < -5 ‰) in the melt will mix with mantle carbon (δ
13

C = -5 ‰) in the carbide (or 

dissolved in solid solution within an Fe-Ni alloy) creating diamonds with intermediate isotopic 

compositions. (iv) Isotopically heavy oxygen (δ
18

O > 6 ‰) in the melt will mix with mantle oxygen 



(δ
18

O = 5.7 ‰) when the FeO and crystallised former melt components produced by the redox freezing 

reaction enter solid solution with and/or react with the surrounding mantle silicate phases. 

 

The simultaneous operation of processes (iii) and (iv) will give rise to a mixing line between mantle and 

slab components. The general form of a two-component mixing line is a hyperbola most simply 

described by a pair of parametric equations: 

δ
13

Cmix =  
δ

13
C

melt 
∙ XC

melt ∙ x + δ
13

C
mantle 

∙ XC
mantle 

∙ (1 – x)

XC
melt ∙ x + XC

mantle 
∙ (1 – x)

  

and 

δ
18

Omix =  
δ

18
O

melt ∙ XO
melt  ∙ x + δ

18
O

mantle ∙ XO
mantle  ∙ (1 – x)

XO
melt  ∙ x + XO

mantle  ∙ (1 – x)
  

where x and (1 – x) are the proportions of slab melt and mantle component, respectively, and Xi is the 

concentration of element i in either the slab melt or the ambient mantle. With only two variables (δ
13

C 

of the diamond and δ
18

O of inclusions) measured directly, assumptions must be made about the isotopic 

and chemical compositions of the end-members to model the mixing hyperbola. The chemical 

composition of the carbonate melt is reasonably well constrained by experimental studies, with values 

of XC
melt

 = 15.1 atomic % and XO
melt

 = 60.1 atomic % (average values from the 1300 °C, 13 GPa and 

1400 °C, 17 GPa experiments of Kiseeva et al., 2013). The mantle is accepted to have an isotopic 

composition of δ
13

C
mantle

 = -5 ‰ and δ
18

O
mantle

 = 5.7 ‰ (Bindeman, 2008, Ickert et al., 2013); values of 

δ
13

C
melt

 = -26 ± 1 ‰ and δ
18

O
melt

 = 11.25 ± 0.25 ‰ for the slab melt endmember are obtained by visual 

inspection of the data. The remaining two parameters, XC
mantle

 and XO
mantle

, relate to the portion of the 

mantle reacting with the carbonate melt. We envisage this “effective reaction mixture” as containing 

both the Fe-carbide or metal involved in the redox reaction and neighbouring silicate grains (e.g. 

(Mg,Fe)2SiO4 polymorphs) that are close enough to exchange O isotopes diffusively or by 

dissolution/precipitation reactions. The best fit to the data suggests that the molar ratio Fe3C/silicate 

(modelled as Mg2SiO4 for simplicity) must, on average, lie in the range 2 to 3.5 (Figure 4); if Fe metal 

containing minor dissolved C is the reductant the ratio must be considerably higher. The wide range of 

C-rich phases within oceanic crust and their highly variable isotopic compositions (Shilobreeva et al., 



2011) mean that other fits to the data are possible. The scatter of the data is attributed to a combination 

of variations in δ
13

C
melt

 and δ
18

O
melt

 arising from heterogeneity in the slab and “effective reaction 

mixtures” that will depend on the nature of the reactive flow of carbonate melts through the mantle, and 

on local thermal, chemical and textural conditions. In other words, it is to be expected that a suite of 

mixing lines will be in operation, resulting in a “mixing field”; four such mixing lines are shown in 

Figure 4. However, although our simple model is not the only possible explanation of the data the key 

observations are (i) that the inclusions are isotopically heavy in oxygen and hence must be derived 

largely from crustal material; (ii) the correlation cannot be explained by fractionation, which would 

result in a positively sloped correlation (Ickert et al., 2013). 

 

The mass balance of the redox reaction between carbonate melt and metal or carbide proposed here can 

be calculated in two ways. Firstly, if the process is considered in terms of a direct local replacement of 

Fe or Fe3C grains by diamond, how large would the grains have to be? Assuming a spherical geometry 

with a typical diamond diameters in the range 2.5 – 3 mm and taking into account the stoichiometry of 

the reaction and the relative densities, but ignoring the effects of resorption, the grain size of Fe metal or 

Fe3C would be ~ 4.5 and 4 mm respectively. The actual grain size of Fe or Fe3C in the mantle is 

unknown, but these figures seem reasonable given the grain size of silicate minerals in mantle xenoliths. 

The second way to consider the issue of mass balance is to start from the expected proportion of metal 

in peridotite at appropriate mantle depths, which is 50 – 700 ppm by weight (Rohrbach et al., 2014), and 

calculate the maximum possible diamond grade of the mantle source rock. This range of Fe abundances 

would give a diamond grade between 27 and 376 ct/tonne which is an abundant excess compared to the 

observed value of 0.40 ct/tonne in the Collier-4 kimberlite (Kaminsky et al., 2010). Therefore, even if 

resorption is taken into account there is likely to be sufficient reductant present in the mantle to account 

for the formation of these diamonds. 

 

It was suggested by Luth and Stachel (2014) that diamond formation in the lithosphere is unlikely to be 

controlled by reduction of Fe
3+

 to Fe
2+

 because there is too little buffering potential in such reactions; 

diamond precipitation as a result of cooling and depressurising C-H-O fluids was proposed instead. 



Such a mechanism would not explain the observations of the present study: the curvature of the mixing 

line requires the “effective reaction mixture” to have a higher C/O ratio than the slab-derived melt, a 

feature that is best explained by carbide and/or C-bearing metal predominating at the site of diamond 

crystallisation. The concerns raised by Luth and Stachel (2014) should, however, be taken into 

consideration when attempting to explain the relationships between δ
13

C and δ
18

O for lithospheric 

diamonds (e.g. Ickert et al., 2013), which are similar to that in the present study but must have a 

different origin.  

 

Our model is consistent with the δ
13

C zonation observed in Juina-5 and Collier-4 diamonds. Although 

the zonation varies (Bulanova et al. 2010; Thomson et al. 2014), nearly all the diamonds that contain 

very light carbon (-22 to -27 ‰) are either unzoned or have a light core and heavier rim. This suggests 

initial diamond growth from a fluid dominated by the crustal-derived carbon component, and 

progressive dilution of crustal carbon in the fluid with mantle carbon as the mixing process and diamond 

growth progress together. Although δ
13

CPDB ~ 0 is typical for carbonates, whether they are hydrothermal 

(e.g. Alt and Teagle, 2003) or sedimentary (Hudson, 1977), and the low values proposed in the present 

study are more characteristic of organic material, isotopically-light C is known from CO2 in fluid 

inclusions in a number of high-pressure metamorphic rocks (Nadeau et al., 1993; Yang et al., 2001). 

These lighter values presumably arise by metamorphism of precursor organic carbon. Serpentinite 

breakdown has been linked to the generation of oxidised fluids (Debret et al., 2015); we suggest that this 

and other metamorphic processes generate a low-δ
13

C carbonate reservoir within the subducted slab.  

 

Our model is also compatible with all other observations of melting of carbonated subducted crust and 

the mineralogy and compositions of inclusions in superdeep diamonds, including the scarcity of carbide 

and metal (Bulanova et al. 2010, Thomson et al. 2014). Moreover, a study of the coupled behaviour of C 

and N isotopes in Juina diamonds similarly found evidence for a mixing relationship between crustal 

and mantle components (Palot et al., 2012). Alternate explanations for the isotopic co-variation we 

observe are unsatisfactory. The distribution of the data, with a large range in δ
13

C while δ
18

O remains 

elevated, demonstrates that O mixes less efficiently than C; in our model this is because the “effective 



reaction mixture” that makes up the mantle component is dominated by metal or carbide. Mixing C 

whilst preserving the crustal δ
18

O could be achieved by ingress of a mantle-derived H2O- and 

CO2/carbonate-free fluid into the slab: these chemical constraints rule out all C-bearing fluids except 

CH4. Although methane-rich fluids have been associated with diamond formation (Thomassot et al., 

2007), they seem improbable for our suite of samples because of the existence of carbonate inclusions 

(Bulanova et al., 2010; Thomson et al., 2014) that would not be stable with the significantly more 

reducing conditions required for methane to predominate in the fluid. 

 

Superdeep diamonds from Jagersfontein (South Africa) that host majorite inclusions show a more 

limited range of δ
13

C and δ
18

O (Ickert et al., 2015), but nonetheless show a weak negative correlation 

between the two isotopic systems (Fig. 1). The Ickert et al. (2015) data have slightly lower δ
18

O but 

would otherwise be consistent with similar model parameters to the present study. It has been proposed 

that the Jagersfontein and Juina-region diamonds relate to Mesozoic subduction off the Gondwanan 

margin (Harte and Richardson, 2012), and although local variations in the subducted lithology will have 

been present, the mechanism of diamond formation is expected to be the same. The slope of the 

correlation is similar to that in the present study, but is offset, suggesting a crustal endmember with 

lower δ
18

O but an otherwise similar mixing relationship occurred in the source region of those samples. 

The contrast between the smaller range of C and O isotopic compositions in the Jagersfontein samples 

and the large range in the present study could be due to textural differences in the source region. 

Conceptually it seems likely that large variations in the ratio of slab to mantle components (and 

consequently δ
13

C and δ
18

O) could be achieved more readily by mass transport of the slab-derived melt 

in veins, whereas diffuse, grain-boundary percolation of this melt would result in a more uniform 

mixing ratio.  

 

The reaction of the carbonate melt with Fe metal or carbide is likely to generate local enrichments in Fe 

oxide and silicate minerals. Inclusions with high Fe contents are observed in many diamonds from the 

Juina region, including magnesiowüstite (Fe,Mg)O with Mg# (=Mg/(Fe+Mg)) as low as 0.36 

(Kaminsky, 2012) and jeffbenite (formerly called TAPP, tetragonal almandine-pyrope phase) with Mg# 



as low as 0.555 (Bulanova et al., 2010); indeed diamond RC2-7 contained an inclusion of the latter with 

Mg# = 0.61 and a small (10 x 5 µm) touching grain of (Mg, Fe)CO3, which is consistent with the model 

advanced above.
 

 

In conclusion, the observed oxygen isotopic data for inclusions in superdeep diamonds unambiguously 

demonstrate that altered oceanic basalts and/or clastic sediments can be retained as an integral part of 

the slab and descend to the deep upper mantle without being extracted by melting or abrasion by high 

shear forces at the slab/mantle interface. Interaction of seawater with MORB imparts additional 

chemical and isotopic signatures. Pb isotopic ratios, δ
7
Li and 

87
Sr/

86
Sr have all been demonstrated to 

correlate with δ
18

O in altered sea floor basalts (Hart et al., 1999; Gao et al., 2012). Given the evidence in 

this study for an 
18

O-enriched silicate reservoir in the transition zone, it seems highly likely that the 

source region for these superdeep diamonds differs from normal mantle with respect to the isotopic 

ratios of fluid-mobile elements such as Pb, Sr and Li; the high concentrations of incompatible elements 

in low-degree slab melts (Walter et al., 2008) would efficiently transfer these anomalous isotopic 

signatures to the surrounding mantle. 
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Figure Captions 

Fig. 1 Previously reported co-variation of δ
13

C and δ
18

O for diamonds and their inclusions worldwide: 

majoritic (superdeep) garnets from Jagersfontein, South Africa (Ickert et al., 2015), and lithospheric 

minerals (coesite and garnet) from Argyle, Australia (Schulze et al., 2013), Damtshaa, Botswana (Ickert 

et al., 2013), Finsch, South Africa (Lowry et al., 1999) and Guaniamo, Venezuela (Schulze et al., 2013). 



 

Fig. 2 Backscattered electron images of a) coesite with exsolved kyanite (Ju5-61), b) garnet of 

eclogitic affinity with exsolved omphacitic clinopyroxene (Ju5-32) and c) CaSiO3-walstromite with 

exsolved perovskite (RC2-7). 

 

Fig. 3 Cathodoluminescence image of diamonds a) Ju5-61 and b) Ju5-119 showing complex internal 

growth structures typical of superdeep diamonds. 

 

Fig. 4 Co-variation of δ
13

C and δ
18

O for the diamonds and inclusions analysed in the present study and 

possible fits to the data, indicating the magnitude of the variability of the mixing process: a – δ
18

O
melt

 = 

11 ‰ and Fe3C/Mg2SiO4 = 2; b – δ
18

O
melt

 = 12 ‰ and Fe3C/Mg2SiO4 = 1.5; c – δ
18

O
melt

 = 11.5 ‰ and 

Fe3C/Mg2SiO4 = 2.5; d – δ
18

O
melt

 = 11.5 ‰ and Fe3C/Mg2SiO4 = 4. Collectively the possible mixing 

lines define a “mixing field”. Error bars are 1σ of replicate measurements, where obtained (some are 

smaller than the data points and are not plotted).  
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Table 1. A summary of the diamonds and inclusions studied. Carbon isotopic compositions 

were measured adjacent to the inclusion. Values in parentheses indicate 1σ of replicate 

analyses (where performed; ‘0’ denotes a value < 0.1 ‰). 

Sample name δ
13

Cdiamond Mineral δ
18

Omineral 

Collier-4 

ColN-4 -7.5(6) coesite
1
 9.3 

ColN-7 -6.9(0) Ca-walstromite
2 

10.1 

ColN-10 -10.7(2) garnet
3
 7.5 

ColN-15 -10.6(1) Ca-walstromite 7.8 

ColN-17 -16.9(7) coesite 10.2 

ColN-18-1
4 

-10.0(5) garnet
3
 8.5(3) 

ColN-18-2
4 

-9.6(1) garnet
3
 9.2 

ColN-23 -8.6(1) garnet 9.0(1) 

J14 -6.7(2) Ca-walstromite
5 

9.7(2) 

J17 -9.3(3) coesite
5 

10.3 

J19 -23.7(4) coesite
1,5 

12.9 

RC1-2 -7.6(3) garnet 9.3(1) 

RC2-7 -8.5(1) Ca-walstromite
2 

10.8(3) 

TR1-18A -6.4(2) coesite
1
 8.3 

Juina-5 

Ju5-32 -18.8(6) garnet
3,5

 9.7(2) 

Ju5-61 -24.0(1) coesite
1
 9.7 

Ju5-63 -26.1(3) coesite
1
 10.9 

Ju5-82 -24.4(2) garnet
3
 11.8(4) 

Ju5-83 -25.7(1) garnet
3,5

 11.3 

Ju5-89 -23.2(6) coesite 9.8 

Ju5-90 -15.3(5) coesite
1,5

 10.7 

Ju5-119 -9.4(0) garnet
5 

9.3(4) 

Machado River 

P28 -2.9(1) Ca-walstromite 7.6(2) 

 

1 – indicates coesite with visible exsolved kyanite 

2 – indicates Ca-walstromite with visible exsolved CaTiO3 (perovskite sensu stricto) 

3 – indicates garnet with exsolved clinopyroxene 

4 – two separate (non-touching) inclusions occurring within one diamond; an inclusion of Ca-

walstromite was observed by Raman spectroscopy but not exposed or analysed 

5 – inclusion previously reported (Bulanova et al., 2010 and Thomson et al., 2014 for Collier-

4 and Juina-5 respectively)



Table 2. Compositions of the garnets studied, as determined by EPMA (all Fe as FeO). ‘0’ denotes the element was below the limits of detection 

(0.01 – 0.02 %); n.a. – not analysed. Asterisks indicate the estimated bulk composition of the garnet prior to exsolution of clinopyroxene. 

 

 

 

 

 

 

 

 

Table 3. Compositions of the Ca-walstromites studied, as determined by EPMA (all Fe as FeO). ‘0’ denotes the element was below the limits of 

detection (0.01 – 0.02 %). 

 

 

 

Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

ColN-10 40.26 1.58 19.96 0.03 17.44 0.38 7.88 10.71 1.01 0 0.03 99.27 

ColN-18-1 40.91 1.40 21.02 0.04 17.41 0.42 8.61 10.69 0.74 0.02 0.01 101.26 

ColN-18-2 40.65 1.49 20.89 0.04 17.25 0.40 8.71 10.00 0.88 0.01 0 100.33 

ColN-23 38.73 0.78 21.19 0.14 18.68 0.45 9.07 9.24 0.13 0 0.02 98.44 

Ju5-32 44.31 0.66 19.17 0.16 12.09 0.28 15.45 7.30 1.34 0 0.06 100.82 

Ju5-32* 46.42 0.64 18.55 0.15 11.14 0.26 14.75 6.65 1.43 0.01 n.a. 100 

Ju5-82 40.12 0.94 20.16 0.02 15.23 0.56 11.86 6.43 1.03 0.02 0.02 96.39 

Ju5-83 40.92 0.65 20.60 0.03 16.56 0.60 11.63 6.75 0.83 0 0.09 98.66 

Ju5-83* 44.05 0.71 20.07 0.05 16.20 0.54 11.31 5.91 1.14 0.02 n.a. 100 

Ju5-119 38.71 1.29 20.80 0.03 18.32 0.43 7.38 12.46 0.26 0 0.02 99.71 

RC1-2 38.79 1.53 20.56 0.06 16.08 0.36 6.91 14.60 0.27 0.02 0.01 99.20 

Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

ColN-7 50.52 0.03 0.10 0.00 0.21 0.07 0.06 49.05 0.06 0.02 0.03 100.14 

ColN-15 51.01 0.03 0.09 0 0.06 0.03 0.04 49.14 0.03 0.03 0.04 100.51 

RC2-7 50.67 0.04 0.03 0.02 0.05 0.03 0.00 48.65 0.05 0.03 0.04 99.61 

J14 50.38 0.02 0 0 0.20 0.05 0 49.11 0 0 0.02 99.79 

P28 51.01 0.01 0.04 0.02 0.15 0.02 0.44 48.56 0.01 0.08 0.04 100.37 
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