23 research outputs found

    The grain-scale distribution and behaviour of melt and fluid in crystalline analogue systems

    Get PDF
    The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.Das Verhalten von Schmelzen und Fluiden im Kornmaßstab bestimmt wichtige Parameter in teilgeschmolzenen Systemen wie z.B. deren PorositĂ€t-PermeabilitĂ€t und Rheologie. Somit ĂŒbt die kleinrĂ€umige (mm bis mm) Schmelzverteilung einen direkten Einfluss auf großrĂ€umige geologische Prozesse wie z.B. die Schmelzsegregation und Migration an Mittelozeanischen RĂŒcken oder Subduktionszonen aus. Obwohl viele der grundlegenden Mechanismen der Gleichgewichtsschmelzverteilung im Kornmaßstab gut bekannt sind, ist der mögliche Einfluss von parallel ablaufenden Prozessen wie z.B. Rekristallisation, Deformation oder chemischem Ungleichgewicht auf die Schmelzverteilung bisher noch unsicher. FĂŒr die vorliegende Arbeit wurden Analogexperimente mit Norcamphor–Ethanol und partiell geschmolzenem KNO3–LiNO3 durchgefĂŒhrt, die es ermöglichen, die Wechselwirkungen zwischen der Schmelzverteilung im Gleichgewicht und den verschiedenen modifizierenden Faktoren in-situ zu beobachten. Das Norcamphor–Ethanol System hat einen Benetzungswinkel von ca. 25° und gleicht in der Hinsicht natĂŒrlichen geschmolzenen System wie z.B. Quarz oder Olivin plus Schmelze. Statische Experimente mit Norcamphor–Ethanol ergaben, dass Rekristallisation kontinuierlich zu einer lokalen Ungleichgewichtsverteilung von der Schmelze fĂŒhrt (4. Kapitel). Der normalerweise als statisch angenommenen charakteristischen Benetzungswinkel in dem Analogsystem wurde ebenfalls durch Kornwachstum verĂ€ndert. Der dynamische Benetzungswinkel ist hierbei eine Funktion der Geschwindigkeit, mit der sich die fest-fest-flĂŒssig Grenze bewegt (5. Kapitel). Bei Deformationsexperimenten (6. Kapitel) wurden abhĂ€ngig von der Schmelzfraktion drei unterschiedliche Deformationsregimes beobachtet. Bei ĂŒber 10 Vol.% Schmelzanteil deformierte das Aggregate durch granulĂ€res Fließen und Kompaktion. Bei einer FlĂŒssigkeitsfraktion < 8-10 Vol.% wurde das Korngrenzgleiten in Scherzonen lokalisiert, die wenig deformierende Kornaggregate voneinander abgrenzten. Unterhalb einer systemspezifischen FlĂŒssigkeitsfraktion bildeten sich zusammenhĂ€ngende Aggregate aus allen Kristallen, welches intern z.B. kristallplastisch deformiert wurde. Die Schmelzsegregation in den Experimenten hing von dem jeweiligen Deformationsmechanismus ab. Korngrenzgleiten oder granulĂ€res Fließen hielt eine bestimmte geometrisch notwendige FlĂŒssigkeitsfraktion in dem deformierenden Gebiet (z.B. in einer Scherzone), wĂ€hrend die FlĂŒssigkeit sehr effizient aus kristallplastisch deformierenden Bereichen gepresst wurde (6. Kapitel). WĂ€hrend der Deformation durch granulĂ€res Fließen oder Korngrenzgleiten kam es außerdem zu einem „dynamische Benetzung“ genannten Prozess, bei dem normalerweise nichtbenetzende FlĂŒssigkeiten (z.B. Gasblasen im Norcamphor) ein temporĂ€res FlĂŒssigkeitsnetzwerk bilden konnten (7. Kapitel). Diese Prozesse wurden mit der Bildung und den Konsequenzen von dynamischen Benetzungswinkeln erklĂ€rt

    Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump

    Get PDF
    A viscosity jump of one to two orders of magnitude in the lower mantle of Earth at 800–1,200-km depth is inferred from geoid inversions and slab-subducting speeds. This jump is known as the mid-mantle viscosity jump1,2. The mid-mantle viscosity jump is a key component of lower-mantle dynamics and evolution because it decelerates slab subduction3, accelerates plume ascent4 and inhibits chemical mixing5. However, because phase transitions of the main lower-mantle minerals do not occur at this depth, the origin of the viscosity jump remains unknown. Here we show that bridgmanite-enriched rocks in the deep lower mantle have a grain size that is more than one order of magnitude larger and a viscosity that is at least one order of magnitude higher than those of the overlying pyrolitic rocks. This contrast is sufficient to explain the mid-mantle viscosity jump1,2. The rapid growth in bridgmanite-enriched rocks at the early stage of the history of Earth and the resulting high viscosity account for their preservation against mantle convection5–7. The high Mg:Si ratio of the upper mantle relative to chondrites8, the anomalous 142Nd:144Nd, 182W:184W and 3He:4He isotopic ratios in hot-spot magmas9,10, the plume deflection4 and slab stagnation in the mid-mantle3 as well as the sparse observations of seismic anisotropy11,12 can be explained by the long-term preservation of bridgmanite-enriched rocks in the deep lower mantle as promoted by their fast grain growth

    The effect of dynamic recrystallisation on the rheology and microstructures of partially molten rocks

    Get PDF
    This work was founded by the joint project “Rheology of the continental crust in collision”, funded by the Procope scheme of PHC Egide in France and by the DAAD PPP scheme in Germany. M-GL acknowledges the support of the Juan de la Cierva programme of the Government of Spain’s Ministry for Science, Innovation and Universities. EGR acknowledges the support of the Beatriu de Pinós programme of the Government of Catalonia's Secretariat for Universities and Research of the Department of Economy and Knowledge (2016 BP 00208). This work benefited from discussions with Pi L. Jolivet and E. Burov within the ERC project RHEOLITH. We thank Elisabetta Mariani and Marcin Dabrowski for their helpful comments, together with the editorial guidance of Dave Healy and Bill Dunne.Peer reviewedPostprin

    The grain-scale distribution and behaviour of melt and fluid in crystalline analogue systems

    Get PDF
    The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.Das Verhalten von Schmelzen und Fluiden im Kornmaßstab bestimmt wichtige Parameter in teilgeschmolzenen Systemen wie z.B. deren PorositĂ€t-PermeabilitĂ€t und Rheologie. Somit ĂŒbt die kleinrĂ€umige (mm bis mm) Schmelzverteilung einen direkten Einfluss auf großrĂ€umige geologische Prozesse wie z.B. die Schmelzsegregation und Migration an Mittelozeanischen RĂŒcken oder Subduktionszonen aus. Obwohl viele der grundlegenden Mechanismen der Gleichgewichtsschmelzverteilung im Kornmaßstab gut bekannt sind, ist der mögliche Einfluss von parallel ablaufenden Prozessen wie z.B. Rekristallisation, Deformation oder chemischem Ungleichgewicht auf die Schmelzverteilung bisher noch unsicher. FĂŒr die vorliegende Arbeit wurden Analogexperimente mit Norcamphor–Ethanol und partiell geschmolzenem KNO3–LiNO3 durchgefĂŒhrt, die es ermöglichen, die Wechselwirkungen zwischen der Schmelzverteilung im Gleichgewicht und den verschiedenen modifizierenden Faktoren in-situ zu beobachten. Das Norcamphor–Ethanol System hat einen Benetzungswinkel von ca. 25° und gleicht in der Hinsicht natĂŒrlichen geschmolzenen System wie z.B. Quarz oder Olivin plus Schmelze. Statische Experimente mit Norcamphor–Ethanol ergaben, dass Rekristallisation kontinuierlich zu einer lokalen Ungleichgewichtsverteilung von der Schmelze fĂŒhrt (4. Kapitel). Der normalerweise als statisch angenommenen charakteristischen Benetzungswinkel in dem Analogsystem wurde ebenfalls durch Kornwachstum verĂ€ndert. Der dynamische Benetzungswinkel ist hierbei eine Funktion der Geschwindigkeit, mit der sich die fest-fest-flĂŒssig Grenze bewegt (5. Kapitel). Bei Deformationsexperimenten (6. Kapitel) wurden abhĂ€ngig von der Schmelzfraktion drei unterschiedliche Deformationsregimes beobachtet. Bei ĂŒber 10 Vol.% Schmelzanteil deformierte das Aggregate durch granulĂ€res Fließen und Kompaktion. Bei einer FlĂŒssigkeitsfraktion < 8-10 Vol.% wurde das Korngrenzgleiten in Scherzonen lokalisiert, die wenig deformierende Kornaggregate voneinander abgrenzten. Unterhalb einer systemspezifischen FlĂŒssigkeitsfraktion bildeten sich zusammenhĂ€ngende Aggregate aus allen Kristallen, welches intern z.B. kristallplastisch deformiert wurde. Die Schmelzsegregation in den Experimenten hing von dem jeweiligen Deformationsmechanismus ab. Korngrenzgleiten oder granulĂ€res Fließen hielt eine bestimmte geometrisch notwendige FlĂŒssigkeitsfraktion in dem deformierenden Gebiet (z.B. in einer Scherzone), wĂ€hrend die FlĂŒssigkeit sehr effizient aus kristallplastisch deformierenden Bereichen gepresst wurde (6. Kapitel). WĂ€hrend der Deformation durch granulĂ€res Fließen oder Korngrenzgleiten kam es außerdem zu einem „dynamische Benetzung“ genannten Prozess, bei dem normalerweise nichtbenetzende FlĂŒssigkeiten (z.B. Gasblasen im Norcamphor) ein temporĂ€res FlĂŒssigkeitsnetzwerk bilden konnten (7. Kapitel). Diese Prozesse wurden mit der Bildung und den Konsequenzen von dynamischen Benetzungswinkeln erklĂ€rt
    corecore