626 research outputs found
Oxidative stress delays development and alters gene expression in the agricultural pest moth, Helicoverpa armigera
Stress is a widespread phenomenon that all organisms must endure. Common in nature is oxidative stress, which can interrupt cell homeostasis to cause cell damage and may be derived from respiration or from environmental exposure through diet. As a result of the routine exposure from respiration, many organisms can mitigate the effects of oxidative stress, but less is known about responses to oxidative stress from other sources. Helicoverpa armigera is a major agricultural pest moth that causes significant damage to crops worldwide. Here, we examined the effects of oxidative stress on H. armigera by chronically exposing individuals to paraquat—a free radical producer—and measuring changes in development (weight, developmental rate, lifespan), and gene expression. We found that oxidative stress strongly affected development in H. armigera, with stressed samples spending more time as caterpillars than control samples (>24 vs. ~15 days, respectively) and therefore living longer overall. We found 1,618 up- and 761 down-regulated genes, respectively, in stressed versus control samples. In the up-regulated gene set, was an over-representation of biological processes related to cuticle and chitin development, glycine metabolism, and oxidation–reduction. Oxidative stress clearly impacts physiology and biochemistry in H. armigera and the interesting finding of an extended lifespan in stressed individuals could demonstrate hormesis, the phenomenon whereby toxic compounds can actually be beneficial at low doses. Collectively, our findings provide new insights into physiological and gene expression responses to oxidative stress in invertebrates.This project was supported through funding from the Australian Research Council (Discovery Early Career Researcher Award DE160100685 to AM), the Centre for Biodiversity Analysis (Ignition Grant to AM), and the Commonwealth Scientific and Industrial Research Organisation (Land and Water)
Mitochondrial DNA genomes of five major Helicoverpa pest species from the Old and New Worlds (Lepidoptera: Noctuidae)
Five species of noctuid moths, Helicoverpa armigera, H. punctigera, H. assulta, H. zea, and H. gelotopoeon, are major agricultural pests inhabiting various and often overlapping global distributions. Visual identification of these species requires a great deal of expertise and misidentification can have repercussions for pest management and agricultural biosecurity. Here, we report on the complete mitochondrial genomes of H. assulta assulta and H. assulta afra, H. gelotopoeon, H. punctigera, H. zea, and H. armigera armigera and H. armigera conferta’ assembled from high‐throughput sequencing data. This study significantly increases the mitogenome resources for these five agricultural pests with sequences assembled from across different continents, including an H. armigera individual collected from an invasive population in Brazil. We infer the phylogenetic relationships of these five Helicoverpa species based on the 13 mitochondrial DNA protein‐coding genes (PCG's) and show that two publicly available mitogenomes of H. assulta (KP015198 and KR149448) have been misidentified or incorrectly assembled. We further consolidate existing PCR‐RFLP methods to cover all five Helicoverpa pest species, providing an updated method that will contribute to species differentiation and to future monitoring efforts of Helicoverpa pest species across different continents. We discuss the value of Helicoverpa mitogenomes to assist with species identification in view of the context of the rapid spread of H. armigera in the New World. With this work, we provide the molecular resources necessary for future studies of the evolutionary history and ecology of these species.CSIRO Health and Biosecurity project
“Genes of Biosecurity Significance” (R‐8681‐1) to WTT and TKW.
CSIRO Land and Water for funding TKW (R‐90204‐01) CSIRO Office
of the Chief Executive postdoctoral fellowship funding (R‐03255‐01)
to CA. CC was funded by FAPEG (Fundação de amparo a pesquisa do
estado de Goiás; Grant number: Helicoverpa/2013102670001419).
USDA‐ARS for funding research of OPP. TW, WTT and KHJG would
like to thank CMK for motivation and support
Bostonia: 1998-1999, no. 1, 3-4
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Adaptive Introgression across Semipermeable Species Boundaries between Local Helicoverpa zea and Invasive Helicoverpa armigera Moths.
Hybridization between invasive and native species has raised global concern, given the dramatic increase in species range shifts and pest outbreaks due to anthropogenic dispersal. Nevertheless, secondary contact between sister lineages of local and invasive species provides a natural laboratory to understand the factors that determine introgression and the maintenance or loss of species barriers. Here, we characterize the early evolutionary outcomes following secondary contact between invasive Helicoverpa armigera and native H. zea in Brazil. We carried out whole-genome resequencing of Helicoverpa moths from Brazil in two temporal samples: during the outbreak of H. armigera in 2013 and 2017. There is evidence for a burst of hybridization and widespread introgression from local H. zea into invasive H. armigera coinciding with H. armigera expansion in 2013. However, in H. armigera, the admixture proportion and the length of introgressed blocks were significantly reduced between 2013 and 2017, suggesting selection against admixture. In contrast to the genome-wide pattern, there was striking evidence for adaptive introgression of a single region from the invasive H. armigera into local H. zea, including an insecticide resistance allele that increased in frequency over time. In summary, despite extensive gene flow after secondary contact, the species boundaries are largely maintained except for the single introgressed region containing the insecticide-resistant locus. We document the worst-case scenario for an invasive species, in which there are now two pest species instead of one, and the native species has acquired resistance to pyrethroid insecticides through introgression
Accurate and exact CNV identification from targeted high-throughput sequence data
<p>Abstract</p> <p>Background</p> <p>Massively parallel sequencing of barcoded DNA samples significantly increases screening efficiency for clinically important genes. Short read aligners are well suited to single nucleotide and indel detection. However, methods for CNV detection from targeted enrichment are lacking. We present a method combining coverage with map information for the identification of deletions and duplications in targeted sequence data.</p> <p>Results</p> <p>Sequencing data is first scanned for gains and losses using a comparison of normalized coverage data between samples. CNV calls are confirmed by testing for a signature of sequences that span the CNV breakpoint. With our method, CNVs can be identified regardless of whether breakpoints are within regions targeted for sequencing. For CNVs where at least one breakpoint is within targeted sequence, exact CNV breakpoints can be identified. In a test data set of 96 subjects sequenced across ~1 Mb genomic sequence using multiplexing technology, our method detected mutations as small as 31 bp, predicted quantitative copy count, and had a low false-positive rate.</p> <p>Conclusions</p> <p>Application of this method allows for identification of gains and losses in targeted sequence data, providing comprehensive mutation screening when combined with a short read aligner.</p
Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome
The analysis of microbiome compositions in the human gut has gained increasing interest due to the broader availability of data and functional databases and substantial progress in data analysis methods, but also due to the high relevance of the microbiome in human health and disease. While most analyses infer interactions among highly abundant species, the large number of low-abundance species has received less attention. Here we present a novel analysis method based on Boolean operations applied to microbial co-occurrence patterns. We calibrate our approach with simulated data based on a dynamical Boolean network model from which we interpret the statistics of attractor states as a theoretical proxy for microbiome composition. We show that for given fractions of synergistic and competitive interactions in the model our Boolean abundance analysis can reliably detect these interactions. Analyzing a novel data set of 822 microbiome compositions of the human gut, we find a large number of highly significant synergistic interactions among these low-abundance species, forming a connected network, and a few isolated competitive interactions
Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri
Background
The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely.
Results
Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system.
Conclusions
In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.publishedVersio
Formation of Chimeric Genes by Copy-Number Variation as a Mutational Mechanism in Schizophrenia
Chimeric genes can be caused by structural genomic rearrangements that fuse together portions of two different genes to create a novel gene. We hypothesize that brain-expressed chimeras may contribute to schizophrenia. Individuals with schizophrenia and control individuals were screened genome wide for copy-number variants (CNVs) that disrupted two genes on the same DNA strand. Candidate events were filtered for predicted brain expression and for frequency < 0.001 in an independent series of 20,000 controls. Four of 124 affected individuals and zero of 290 control individuals harbored such events (p = 0.002); a 47 kb duplication disrupted MATK and ZFR2, a 58 kb duplication disrupted PLEKHD1 and SLC39A9, a 121 kb duplication disrupted DNAJA2 and NETO2, and a 150 kb deletion disrupted MAP3K3 and DDX42. Each fusion produced a stable protein when exogenously expressed in cultured cells. We examined whether these chimeras differed from their parent genes in localization, regulation, or function. Subcellular localizations of DNAJA2-NETO2 and MAP3K3-DDX42 differed from their parent genes. On the basis of the expression profile of the MATK promoter, MATK-ZFR2 is likely to be far more highly expressed in the brain during development than the ZFR2 parent gene. MATK-ZFR2 includes a ZFR2-derived isoform that we demonstrate localizes preferentially to neuronal dendritic branch sites. These results suggest that the formation of chimeric genes is a mechanism by which CNVs contribute to schizophrenia and that, by interfering with parent gene function, chimeras may disrupt critical brain processes, including neurogenesis, neuronal differentiation, and dendritic arborization
- …