1,003 research outputs found

    Comparing groups of Brazilian cattle farmers with different levels of intention to use improved natural grassland

    Get PDF
    This study used the Theory of Planned Behavior (TPB) to analyze the intention of Brazilian farmers to use improved natural grassland. The TPB hypothesizes that the adoption of an innovation is driven by the intention to use it, which in turn is determined by three socio-psychological constructs: attitude, subjective norm, and perceived behavioral control. These constructs are derived from beliefs. The theoretical framework and model were applied to a sample of 214 Brazilian cattle farmers. Based on the socio-psychological constructs that influence intention, two groups of farmers were identified; farmers that were willing and farmers that were unwilling to use improved natural grassland. Results showed that compared to unwilling farmers, willing farmers evaluated the use of improved natural grassland on their farms more favorably (attitude), they felt a greater social pressure upon them to adopt this innovation (social norm), and they reported a higher capability (perceived behavioral control) to use improved natural grassland. Willing and unwilling farmers also differed in their behavioral beliefs concerning the outcomes of using improved natural grassland, their normative beliefs concerning important others, and their control beliefs concerning factors that could facilitate or inhibit the use of improved natural grassland. The two groups did not differ in most of their socioeconomic characteristics, but did differ in their goals and relative risk attitudes

    Non-Markovian polymer reaction kinetics

    Full text link
    Describing the kinetics of polymer reactions, such as the formation of loops and hairpins in nucleic acids or polypeptides, is complicated by the structural dynamics of their chains. Although both intramolecular reactions, such as cyclization, and intermolecular reactions have been studied extensively, both experimentally and theoretically, there is to date no exact explicit analytical treatment of transport-limited polymer reaction kinetics, even in the case of the simplest (Rouse) model of monomers connected by linear springs. We introduce a new analytical approach to calculate the mean reaction time of polymer reactions that encompasses the non-Markovian dynamics of monomer motion. This requires that the conformational statistics of the polymer at the very instant of reaction be determined, which provides, as a by-product, new information on the reaction path. We show that the typical reactive conformation of the polymer is more extended than the equilibrium conformation, which leads to reaction times significantly shorter than predicted by the existing classical Markovian theory.Comment: Main text (7 pages, 5 figures) + Supplemantary Information (13 pages, 2 figures

    Depletion of Mitochondrial DNA Stabilizes C1qTNF-Related Protein 6 mRNA in Muscle Cells

    Get PDF
    Mutation and reduction of mitochondrial DNA (mtDNA) have been suggested as factors in the pathogenesis of several metabolic diseases. Recently, we demonstrated that C1qTNF-related protein-6 (CTRP6) is involved in fatty acid metabolism in muscle cells. In this study, we showed that expression of CTRP6 was up-regulated in mtDNA-depleted C2C12 cells, which displayed a marked decrease in cellular mtDNA and ATP content. Replacement of mtDNA normalized the expression level of CTRP6 similar to that in normal C2C12 cells, indicating that CTRP6 expression was up-regulated by mtDNA depletion. However, CTRP6 promoter activity remained unchanged in mtDNA-depleted cells. We also found that mtDNA depletion inhibited decay of CTRP6 mRNA. Taken together, mtDNA depletion induces an increase in CTRP6 expression by increasing mRNA stability

    A liquid-junction-free reference electrode based on a PEDOT solid-contact and ionogel capping membrane

    Get PDF
    Liquid-junction-free reference electrodes were prepared on screen printed substrates using poly-3,4-ethylenedioxythiophene (PEDOT) as solid-contact and novel ionogels as capping membrane. The chemico-physical properties of the PEDOT layer were tuned by changing the electropolymerization media and electrodeposition technique. Particularly, electrodepositing PEDOT films potentiostatically or potentiodynamically impacted on the traces of the potential of the electrodes during the conditioning step. In addition, the choice of the capping membrane formulation, e.g., acrylate monomers, ionic liquid, cross-linkers and photo-initiators, was adjusted to obtain electrodes with properties almost equivalent of a standard reference electrode. Thus, calibration plots of Na+ ion-selective electrodes against the optimized solid-contact ionogel reference electrodes (SCI-REs) or against a double-liquid junction Ag/AgCl electrode did not present any significant difference. Such SCI-REs may provide an effective route to the generation of future low-cost components for potentiometric sensing strips

    Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms

    Get PDF
    <p>Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.</p> <p>Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.</p> <p>Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.</p&gt

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
    corecore