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ABSTRACT
Real-time dynamic substructuring is a testing technique that

models an entire system through the combination of an experi-
mental test piece, representing part of the system, with a numer-
ical model of the rest of the system. Delays can has a significant
effect on the technique, as signals are passed between the two
parts of the system in real-time. The focus of this paper is the
influence of the delay on the dynamics of the substructured sys-
tem. This is addressed using a linear example which may be de-
scribed by a delay differential equation (DDE) model. This type
of analysis allows critical delay values for system stability to be
computed, which in turn can be used to help design the substruc-
turing test system. Two methods are presented for the example
considered. The first makes use of an analytical approach andthe
second of a numerical software tool, DDE-BIFTOOL. Normally,
in substructuring tests, the actuators response time exceeds the
critical delay time and the substructured system is unstable. It is
demonstrated that the system can be stabilized using an adaptive
delay compensation technique based on forward polynomial pre-
diction. Finally we outline how these techniques may be applied
to an industrial example of modelling a nonlinear spring.

∗Address all correspondence to this author.

INTRODUCTION

Real-time dynamic substructuring is a hybrid numerical-
experimental testing technique that combines acritical element,
tested experimental, with a numerical model of the remainder of
the system being considered. The combination of the two parts
of the system during a real-time test is intended to mimic thebe-
haviour of the complete oremulated system. The key challenge
is to ensure that the combination of the critical element (orsub-
structure) and the numerical model behave in the same way as
the emulated system. So far hybrid testing has been developed
successfully by using expanded time scales, known as pseudo-
dynamic testing [1–4], which has the limitation that dynamic and
hysteresis forces must be estimated. Implementing the process in
real-time, eliminating the need for these estimations, is the sub-
ject of much recent research [5–7].

To carry out a dynamic substructuring test the substructure
is identified and fixed into an experimental test rig. The interface
interaction between the substructure and the numerical model is
typically provided by electric or hydraulic actuators, which apply
displacements on the substructure. The actuators act as atrans-
fer systemand are designed to follow the appropriate output dis-
placements calculated by the numerical model [8]. To complete
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the coupling between the substructure and the numerical model
the forces imposed by the substructure on the transfer system
at the interface are measured and included within the numerical
model. The whole testing process must take place in real-time to
simulate the dynamic behaviours of the emulated system.

If the feedback forces are treated as an external influence (or
forcing) on the numerically modelled part of the system, then the
model can be described by a set of ordinary differential equations
(ODEs). However, as it is not possible for any transfer system to
react instantaneously, delay between the two parts of the model
arise. Therefore, these forces are generally dependent on asys-
tem state subject to delay, and as a result the system is more ac-
curately modelled with delay differential equations (DDEs) [9].
In addition to transfer system delay, other delays such as mea-
surement, signal processing and computation delays are likely to
occur. Typically, for mechanical systems these delays are large
enough to have a significant influence on the overall dynamicsof
the substructured system.

In this paper the effect of delay errors that occur in a sub-
structure experiment is considered using a mass-spring-damper
example. For this system we show how thecritical delay —
the delay at which the substructured system looses stability —
can be found using both an approximate analytical analysis and
DDE-BIFTOOL.

Once the critical delay has been identified, a suitable control
system can be developed to give a stable substructured system
that reproduces the dynamics of the emulated system as closely
as possible. We show results from an experimental implementa-
tion of the mass-spring-damper example, where the criticalele-
ment is connected to a servo-mechanical actuator and the overall
substructured system is stabilized by an adaptive delay compen-
sation technique.

Single-step delay compensation techniques for real-time
substructuring have been shown to improve accuracy [5, 10, 11].
In this paper a more generic approach to delay compensation
based on polynomial forward prediction is used, which allows
more flexibility in compensating for a range of signals. The
experimental results show a high degree of correlation withthe
DDE modelling approach. Finally, we discuss a method of over-
compensation, which can be used to help attain a successful real-
time dynamic substructure test for a dynamical system with very
low damping.

THE SPRING-MASS-DAMPER SYSTEM
The emulated system considered in this paper is the mass-

spring-damper arrangement shown in Fig. 1. The equation of
motion for the system can be written as,

mz̈∗ +c(ż∗− ṙ)+k(z∗− r) = −ksz
∗, (1)
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Figure 1. Schematic representation of the single mass-spring oscillator.
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Figure 2. Schematic representation of a substructuredsystem with

one transfer system.

where,m,c,k and ks are the mass, damping and two stiffness
scalars, respectively,r(t) is the support excitation and the state
of the system is represented byz∗, where(.)∗ is used to indicate
the emulated system — more detailed analysis is given in [12].

To create the substructured model of the system shown in
Fig. 1, the springks is isolated and taken to be the critical el-
ement. The remainder of the structure, the excitation wall and
the mass-spring-damper unit, is modelled numerically — as is
shown schematically in Fig. 2.

The dynamics of the numerical model is

mz̈+c(ż− ṙ)+k(z− r) = F, (2)
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where the feedback forceF is the substructure response ofF =
−ksx. The transfer system cannot react instantaneously to the
change of state of the numerical model which introduces a time
delay such thatx(t) = z(t − τ).

The delayτ introduces a systematic synchronization error
z(t)− x(t) = z(t) − z(t − τ) into the substructuring algorithm.
Therefore, when the synchronization error is non-zero, theforce
is described by the delayed statez of the numerical modelF =
−ksz(t − τ). The overall substructured system is then governed
by a delay differential equation (DDE) that can be written as

mz̈+cż+kz+ksz(t − τ) = cṙ +kr . (3)

The substructured system isunstableif the synchronization er-
ror grows exponentially in time andstableif the synchronization
error remains bounded.

1 STABILITY OF THE HYBRID SYSTEM
From Eqn. (3) forr = ṙ = 0 and withx(t) = z(t − τ) the

complimentary equation is

mz̈+cż+kz+ksx = 0. (4)

This can be expressed with non-dimensionalized parametersin
the form

d2z
dt̂2 +2ζ

dz
dt̂

+z+ px= 0, (5)

whereωn =
√

k
m, t̂ = ωnt, τ̂ = ωnτ, p = ks

k andζ = c
2
√

mk
.

The introduction of a delay term into a linear ordinary differ-
ential equation (ODE) changes the spectrum of the ODE by a per-
turbation of orderτ and introduces infinitely many new modes.
For a small delay the new modes are all strongly damped and the
perturbation of the ODE spectrum can be expanded in the small
parameterτ. The assumption thatτ is small is reasonable for the
parameters used in the experiments in this paper. First a search
for solutions of the formz= Aeλt̂ is performed. This leads to the
characteristic equation for the system of

λ2 +2ζλ +1+ pe−λτ̂ = 0. (6)

The complex rootsλi of Eqn. (6) are the system eigenvalues; the
sign of their real parts determines the stability of the system. For
mechanical and structural systems ,which are lightly damped, ζ
is small and we can assume thatτ̂ is small and expande−λτ̂ to
first order as 1−λτ̂. Using this approximation, Eqn. (6) becomes

λ2 + λ(2ζ− pτ̂)+ (1+ p) = 0. (7)

Solving forλ gives the roots

λ1,2 = −1
2
(2ζ− pτ̂)± 1

2

√

(2ζ− pτ̂)2−4(1+ p), (8)

which govern the dominant eigenvalues for the DDE system
given by Eqn. (3) whenτ ≪ 1. For τ̂ small, we can make the
assumption that the eigenvalues remain complex.

This means that 4(1+ p)> (2ζ−pτ̂)2 such that the real parts
of the eigenvalues from Eqn. (8) determine the overall stability
of the system, i.e. it is stable only ifpτ̂ < 2ζ. This means that
the system is stable if the delayτ is less than the critical delay

τc =
2ζ
pωn

=
c
ks

. (9)

As the response delay,τ, increases pastτc a Hopf bifurcation
occurs [13–15]. It is also clear that for a lightly damped, high
stiffness systemτc will be small and, consequently, the control
algorithm must work harder to maintain stability.

The second approach to determining the stability boundaries
of Eqn. (5) is to search for points in the parameter space where
the characteristic Eqn. (6) has purely imaginary solutions, that is,
just undergoes a Hopf bifurcation [15]. The stability boundaries
are found in the parameter space by searching for solutions of the
form z= Aejωt = Aejω̂t̂ whereω̂ = ω

ωn
is a positive real number

(0 cannot be a characteristic root in this case). Substituting ω̂
into the characteristic equation gives

−ω̂2 +2ζω̂ j +1+ pe− jω̂τ̂ = 0. (10)

Equating real and imaginary parts leads to

τ̂ =
1
ω̂

arccot

(

ω̂2−1
2ζω̂

)

+
nπ
ω̂

(11)

and

p =
√

(ω̂2−1)2+4ζ2ω̂2. (12)

Heren is an integer — if arccot is to be taken between 0 andπ
thenn is non-negative (sincêτ is positive).

In Fig. 3 the curves forn= 0 ton= 3 are shown in the(τ̂, p)-
plane withζ fixed at 0.1066. They define the stability boundary;
the grey area is the region of stability. The dashed curve in Fig. 3
is the stability boundary Eqn. (9) obtained from the perturbation
analysis — clearly demonstrating that the approximation only
holds for small values of the delay. The critical valueτ̂c from
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Figure 3. Non-dimensionalized complex root solutions of the DDE anal-

ysis for a range of response delays and substructure stiffnesses (solid

line: exact solution, dashed line: perturbation solution.)

the perturbation analysis can be determined from Fig. 3 asτ̂c =
0.2132, from which the critical time delay can be computed as
τc = 6.67ms. This compares witĥτc = 0.2165 andτc = 6.77ms
from the complex root solution.

1.1 Numerical Stability Analysis
For more complex systems it becomes impossible to find sta-

bility regions by using the analytical approach we have discussed
above. In this case a numerical approach for finding the stabil-
ity regions can be carried out using DDE-BIFTOOL. This tool is
a collection of Matlab routines for numerical bifurcation analy-
sis of systems of DDEs with multiple fixed, discrete delays; it is
freely available for scientific purposes [16]. The package can be
used to compute branches of steady state solutions (equilibria)
and Hopf bifurcations. It also allows solutions to be continued,
as system parameters are changed.

For the mass-spring-damper example the real parts of the
roots of the characteristic equation, computed using DDE-
BIFTOOL, are shown in Fig. 4 for the case wherep = 1. The
system loses stability when the first curve crosses the zero axis,
corresponding to a pair of roots crossing the imaginary axisinto
the right half plane. This occurs at a value ofτc = 6.77ms which
agrees with the value found in the explicit stability analysis. This
demonstrates how DDE-BIFTOOL can be used to model hybrid
testing problems, especially those that are complex and/ornon-
linear systems.

2 EXPERIMENTAL SUBSTRUCTURE TESTING

2.1 Delay compensation
The technique discussed in this paper is an Adaptive For-

ward Prediction (AFP) algorithm, presented by Wallaceet al.
[17]. The AFP algorithm is a generic approach to delay compen-
sation. It allows non-integer multiples of the previous time step
to be predicted and adapts to changing plant conditions through
self-tuning. Delay compensation is based on the idea of feeding
a forward predictionz′ of the numerical model statez of the into
the transfer system. The AFP algorithm uses the prediction

z(t)′ = (PN,n,∆[z])(t + ρ) (13)

wherePN,n,∆[z] is the least-squares fittedNth-order polynomial
through then time-point pairs(t,z(t)), (t −∆,z(t −∆)),. . . , (t −
(n−1)∆,z(t− (n−1)∆)). The time difference∆ is the sampling
time step andρ is the amount of forward prediction. Thusρ is
used to compensate for the delayτ generated by the control of the
transfer system. The full AFP algorithm allowsρ to start from
a set initial condition and includes an adaptive compensation for
the amplitude inaccuracy. It is described in detail in Wallaceet
al. [17].

A fundamental difficulty for hybrid testing is that it is only
safe to start an experimental test from a region of stability, — oth-
erwise the system may destabilize if the controller cannot adapt
to counteract for the delay effects quickly enough. Hence, it
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is important for the performance of the AFP algorithm to find
the interval of permissibleρ where the hybrid system with delay
compensation, Eqn. (13), is stable. When the delay compensa-
tion of the AFP algorithm is applied the feed back force of the
critical element changes to

F = −ks(PN,n,∆[z])(t + ρ− τ). (14)

System Eqns. (2) and (14) is now a DDE that depends on the val-
ues ofz at the timest − τ,. . . , t − τ− (n− 1)∆. The interval of
permissibleρ for the system parameters can be computed using
DDE-BIFTOOL. Figure 5 shows how the real part of the domi-
nant eigenvalues of Eqns. (2) and. (14) varies withρ. Figure 5(a)
represents the stability of the AFP algorithm for a fitting polyno-
mial PN,n,∆ of orderN = 2 for n = 12 previous values ofz, and
Fig. 5(b) corresponds to a polynomial of orderN = 3 fitted to
n = 12 previous values. Both prediction schemes are compared
to the exact prediction (grey line) using

F = −ksz(t + ρ− τ) (15)

for ρ within the interval from−20ms to 45ms. The vertical
dashed lines indicate the parameter valuesρ = 0 (short dashes,
no forward prediction, all curves coincide here) andρ = 9.4ms
(forward prediction equals the actual delay in the system,ρ = τ).
These calculations show how the stability of the substructured
system with delay compensation Eqn. (14) depends onρ. If the
forward prediction could matchz(t−τ+ρ) perfectly (grey line),
all ρ greater thanτ−τc = 2.63ms would result in a stable system.

The polynomial forward prediction gives, in general, only a
finite interval of stability forρ, and for low order schemes the
interval of permissibleρ is it is largest. In this example, stability
ranges fromρ ≈ τ− τc = 2.63ms toρmax≈ 40ms forN = 2,
n = 12 (as in Fig. 5(a)). Thus, for lowN the AFP algorithm
can start with an initial guess forρ that is substantially larger
than the delayτ. Increasing the orderN of the fitting polynomial
improves the accuracy of the prediction but, in general, shrinks
the range of forward predictionρ. For example, Fig. 5(b) shows
that the maximal permissibleρ is atρmax≈ 23ms forN = 3,n=
12. Nearρmax another eigenvalue of system Eqns. (2) and (14)
becomes dominant and unstable. Additionally, we note that the
permissible order ofN is limited by the noise that is fed back
from the load transducer.

2.2 Experimental Results
Our implementation of real-time substructuring used a

dSpace DS1104 R&D Controller Board running on hardware
architecture of MPC8240 (PowerPC 603e core) at 250 MHz
with 32 MB synchronous DRAM. The dSpace companion soft-
ware ControlDesk was used for online analysis, providing soft
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Figure 5. Real part of characteristic root eiganvalues for AFP strategy

compared to the forward prediction using the exact value z(t−τ+ρ) for

(a) N = 2and (b) N = 3with n= 12. Dominant eigenvalue is highlighted

in bold; the long dashed line represents the transfer system delay for the

experimental tests

Figure 6. Experimental rig setup of substructured system.
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real-time access to the hard real-time application. The system
parameters were found through system identification, namely
m = 2.2kg, k = ks = 2250N/m andc = 15Ns/m. The transfer
system is a UBA (timing belt and ball screw configuration) linear
Servomech actuator. Figure 6 shows the experimental rig setup
of the substructured system.

Figure 7 shows typical experimental steady-state results for
a wall excitation of 1.5Hz andconstantdelay compensation of
ρ = 9.4ms with polynomial fitting ofN = 3 andn = 12. From
Fig. 7(a) it is clear that the numerical model dynamicsz closely
replicate those of the emulated systemz∗, losing significant accu-
racy only at direction changes of the actuator. The transfersys-
tem dynamics are shown via a synchronization subspace plot [17]
in Fig. 7(b), where perfect synchronization is representedby a
straight diagonal line. A constant delay turns this straight line
into an ellipse, as can be seen from the limit of stability shown in
grey, representingz vs. z(t − τc). The subspace plots show that
there is generally a high level of synchronization, well below the
stable limit, apart from when the actuators change direction.

The transition to instability can be seen from Fig. 8 for the
experimental system which occurs when the forward prediction
is reduced toρ = 2.6ms. Since, in this example, the resulting
delay ofτ = 6.8ms is only slightly above the theoretical critical
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Figure 7. Experimental real-time substructure test with wall excitation of

1.5Hz and delay compensation of 9.4ms, (a) comparison of substructuring

and emulated systems displacement and (b) synchronization subspace,

with the limit of stability shown by the zvs z(t − τc) loop.
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Figure 8. Transition to instability as the delay compensation is reduced

on the experimental system; forward prediction of ρ ≈ 2.6ms.

delay of τc = 6.77ms the resulting exponential growth is rela-
tively slow.

2.3 Over compensation
If delay is considered to be equivalent to adding negative

damping in the system, then over compensating (predicting too
far forward in time) will have the opposite effect of increasing
the damping. Therefore, controlling the system to ashiftedsyn-
chronization origin (we now takeτ = −0.5ms as having zero
synchronization error), will have the effect of over-damping the
dynamic response of the numerical model. Firstly, this makes
the numerical model slower to react to sudden state changes,i.e.,
high frequency noise fed back from the substructure. Secondly,
it means that there is greater margin before the critical delay limit
is reached, which constitutes a trade-off with the reduction in ac-
curacy.

However, there is a more fundamental reason why it is sig-
nificant to be able to operate the substructuring algorithm in an
over-compensated region: to deal with substructuring tests when
τ > τc. In this case (as with all substructuring tests) it is prefer-
able to start the test using the measured force. However, this may
lead to immediate instability and a failed test. A pragmaticap-
proach that ensures stability is to initiate the test using anumeri-
cal estimation of the force (i.e., zero time delay) and switch over
to the measured force when the control algorithm has achieved
a high level of synchronization. Although the system is stable,
now there is a corresponding loss of accuracy.

In the example considered here the actual response delay of
τ = 9.4ms is greater than the critical delay ofτc = 6.77ms, mean-
ing that the test is initiated in an unstable region. However, this
may not necessarily lead to a catastrophic instability if the con-
troller can respond faster than the unstable growth. When there is
uncertainty about the critical element or transfer system(s) char-
acteristics, the AFP algorithm should start with a low orderN
to give a large range of stable forward predictionρ and to over
compensate the initial guess. This gives the largest stableregion
as shown by Fig. 5. Once the adaptation algorithm is close to
convergence, the prediction order can be increased to improve
the accuracy of the substructuring experiment. The permissible
orderN is limited because the maximal stableρ shrinks belowτ
for increasingN.

This can be seen in Fig. 9, where panel (a) shows the over
compensation method, (b) the zero initial conditions method, and
(c) the case of no delay compensation.

3 A PIECEWISE LINEAR EXAMPLE
The analysis of the spring-mass-damper example served to

illustrate the application of the substructuring technique and the
usefulness of DDE modelling. We now introduce an example of
a genuinely nonlinear model that is directly motivated by a va-
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delay compensation (note this test was stopped after 2.3s due to exces-

sive displacements). Controller adaption parameters: α = 75, β = 5,

γ = 2, N = 3, n = 12.

riety of engineering applications which include force saturation
behaviour, such as occurs in the fields of mechatronics and actu-
ation.

In these types of applications it is a valid approach to as-
sume that the stiffness force is a nonlinear function that can be
approximated by a piecewise linear stiffness function as isshown
in Fig. 10.

We now have a nonlinear stiffness force,Fk, which is mod-
eled by a piecewise linear function of the form

Fk(t) =











Fa x≥ a

kpx −a < x < a

−Fa x≤−a.

(16)

In this case we have

mz̈+cż+kz+Fk(t) = 0. (17)

For−a< x< a, this can be expressed in the same way as Eqn. (5)
as

d2z
dt̂2 +2ζ

dz
dt̂

+z+ px= 0, (18)

    a

x

k

a

−a

 F

 Fa

 −F

Figure 10. Piecewise linear stiffness model

whereωn =
√

k
m, t̂ = ωnt, τ̂ = ωnτ, p=

kp
k andζ = c

2
√

mk
. So that

from the analysis in section 1 we getτc = c
kp

. In this example,
for x ≥ a andx ≤ −a there is no critical delayτc becauseFa is
constant and does not depend on the delayed statez(t − τ). This
is simply another DDE to which the technique presented in this
paper of using DDE-BIFTOOL may be applied. However, due
to the piecewise linear nature of the problem, there may well
be other modes of stability loss and complex behaviour which
are as yet unexplored in the context of substructure testing. The
analysis of effects of such nonlinearities constitutes an important
future direction towards applying this work to real engineering
systems.

4 CONCLUSION
In this paper the hybrid numerical-experimental technique

of real-time dynamic substructuring has been considered. The
example of a single mass-spring oscillator system has been used
to demonstrate the effect of delay on the accuracy and stability
of the substructuring algorithm. The substructured systemhas
been represented as a delay differential equation (DDE) model
and critical delay values were determined via analysis and with
the software DDE-BIFTOOL.

In real-time dynamic substructuring, the delays arise
through the control of the transfer systems, which are oftenlarger
than the critical delay. An example of an adaptive delay compen-
sation scheme has been presented, which was validated by ex-
perimental measurements. Again with DDE-BIFTOOL we dis-
cussed an over compensation method for substructuring thatcan
be used to initiate the test in a stable region of the substructur-
ing algorithm. Finally, we briefly discussed the application of
the DDE modelling to a nonlinear stiffness function that canbe
approximated by a piecewise linear function.

In future work the DDE approach will be used in more
complex substructuring scenarios. The overall goal is to imple-
ment real-time dynamic substructuring of real engineeringcom-
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ponents, such as cables of suspension bridges and sloshing tanks
for high-rise buildings, and damper units for helicopter rotors.
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