2,791 research outputs found

    Modelling self-piercing riveted joint failures in automotive crash structures

    Get PDF
    This paper describes a new model and method to predict Self-Piercing Riveted (SPR) joint interlock failures in aluminium sheet at crash speeds using explicit finite element simulation. SPR interlock failure is dependent on rivet direction, which is included in the model. A mesh independent approach is adopted for connection model which is capable of industrial application at the full vehicle crash analysis level. The paper provides an overview of the approach to validate connection model; typically by developing detailed physics based models of various joint configurations supported with high speed experimental data, through to model capable of industrial application. The framework to validate connection model for use in crash simulation tools is expected to have broader applicatio

    Validating dynamic tensile mechanical properties of sheet steels for automotive crash applications

    Get PDF
    A thin-wall open channel beam, fabricated from high strength Dual Phase sheet steel, subjected to 3-point bending and constant velocity boundary condition, is investigated to validate material performance for automotive crash applications. Specifically quantitative validation of material tensile data determined from high speed tests and component models, and qualitative validation of materials resistance to fracture. The open channel beam is subjected to quasi-static and increasing loading speed and in all cases, large displacement in which deformation involves formation of a plastic hinge. This paper describes development of test procedure, notably beam specimen design, measurement system and boundary conditions, using both experimental and numerical techniques. The new test procedure, as a compliment to crush testing, will increase confidence in the modeling and application of new advanced higher strength materials in automotive crash structure

    Xiphinema index and its Relationship to Grapevines: A review

    Get PDF
    The dagger nematode, Xiphinema index, is considered a major pest in grape growing countries. Xiphinemaindex is especially important because of its ability to transmit Grapevine fanleaf virus when feeding ongrapevine roots. This paper provides a comprehensive and updated review of the classification, genetics andbiology of Xiphinema index, and its relationship with grapevine fanleaf virus. Current control measures, aswell as past and present efforts to breed resistant grapevine rootstocks, are presented

    PCN115 A CROSS-COUNTRY COMPARISON OF SECOND-LINE MULTIPLE MYELOMA TREATMENTS

    Get PDF

    Optical properties of tissue measured using terahertz pulsed imaging.

    Get PDF
    The first demonstrations of terahertz imaging in biomedicine were made several years ago, but few data are available on the optical properties of human tissue at terahertz frequencies. A catalogue of these properties has been established to estimate variability and determine the practicality of proposed medical applications in terms of penetration depth, image contrast and reflection at boundaries. A pulsed terahertz imaging system with a useful bandwidth 0.5-2.5 THz was used. Local ethical committee approval was obtained. Transmission measurements were made through tissue slices of thickness 0.08 to 1 mm, including tooth enamel and dentine, cortical bone, skin, adipose tissue and striated muscle. The mean and standard deviation for refractive index and linear attenuation coefficient, both broadband and as a function of frequency, were calculated. The measurements were used in simple models of the transmission, reflection and propagation of terahertz radiation in potential medical applications. Refractive indices ranged from 1.5 ± 0.5 for adipose tissue to 3.06 ± 0.09 for tooth enamel. Significant differences (P<0.05) were found between the broadband refractive indices of a number of tissues. Terahertz radiation is strongly absorbed in tissue so reflection imaging, which has lower penetration requirements than transmission, shows promise for dental or dermatological applications

    Investigation of the Chirikov resonance overlap criteria for equatorial magnetosonic waves

    Get PDF
    Observations of equatorial magnetosonic waves made during the Cluster I nnerMagnetospheric Campaign clearly show discrete spectra consisting of emissions around harmonics of theproton gyrofrequency. Equatorial magnetosonic waves are important because of their ability to efficientlyscatter electrons in energy and pitch angle. This wave-particle interaction is numerically modeled throughthe use of diffusion coefficients, calculated based on a continuous spectrum such as that observed byspectrum analyzers. Using the Chirikov overlap resonance criterion, the calculation of the diffusioncoefficient will be assessed to determine whether they should be calculated based on the discrete spectralfeatures as opposed to a continuous spectrum. For the period studied, it is determined that the discretenature of the waves does fulfill the Chirikov overlap criterion and so the use of quasi-linear theory with theassumption of a continuous frequency spectrum is valid for the calculation of diffusion coefficients

    Prediction of Kp Index Using NARMAX Models with A Robust Model Structure Selection Method

    Get PDF
    The severity of global magnetic disturbances in Near-Earth space can crucially affect human life. These geomagnetic disturbances are often indicated by a Kp index, which is derived from magnetic field data from ground stations, and is known to be correlated with solar wind observations. Forecasting of Kp index is important for understanding the dynamic relationship between the magnetosphere and solar wind. This study presents 3 hours ahead prediction for Kp index using the NARMAX model identified by a novel robust model structure detection method. The identified models are evaluated using 4 years of Kp data. Overall, the models with robust structure can produce very good Kp forecast results and provide transparent and compact representations of the relationship between Kp index and solar wind variables. The robustness and conciseness of the models can highly benefit the space weather forecast tasks

    Cluster observations of non-time-continuous magnetosonic waves

    Get PDF
    Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non-temporallycontinuous emissions. The first, referred to as rising tone emissions, are characterised by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements) are observed to occur periodically in the region ±10◦ off the geomagnetic equator. The sweep rate of these emissions maximises at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterised by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron densit

    Are viruses associated with disc herniation? A clinical case series

    Get PDF
    Background There is some limited evidence for the presence of viruses in herniated disc material including a previous case series that claimed to provide “unequivocal evidence of the presence of herpes virus DNA in intervertebral disc specimens of patients with lumbar disc herniation suggesting the potential role of herpes viruses as a contributing factor to the pathogenesis of degenerative disc disease”. This study has not been replicated. The objective of our study was to determine if viruses were present in herniated disc fragments in participants with a prior history of back pain. Methods We recruited fifteen participants with a history of prior low-back pain prior to undergoing disc herniation surgery in the lumbar spine. Harvested disc samples were subject to next generation sequencing for detection of both RNA and DNA viral pathogens. Additionally, samples were analysed by a broadly reactive PCR targeting herpesviral DNA. Ethics approval was granted by the Human Research Ethics Committees of both Murdoch University, and St John of God Hospital, Western Australia. Results Of the fifteen research participants, 8 were female. Mean age was 49.4 years (SD 14.5 yrs) with a range of 24–70 years. All participants had prior back pain with mean time since first ever attack being 8.8 years (SD 8.8 yrs). No samples contained significant DNA sequences relating to known human viral agents. Inconsequential retroviral sequences were commonly found and were a mixture of putative animal and human retroviral protein coding segments. All samples were negative for herpesvirus DNA when analysed by pan-herpesvirus PCR. Conclusions This study found no viral pathogens in any intervertebral disc fragments of patients who had previous back pain and underwent discectomy for disc herniation and thus it is unlikely that viruses are associated with disc herniation, however given the contradiction between key studies enhanced replication of this experiment is recommended

    Experimental determination of the dispersion relation of magnetosonic waves

    Get PDF
    Magnetosonic waves are commonly observed in the vicinity of the terrestrial magnetic equator. It has been proposed that within this region they may interact with radiation belt electrons, accelerating some to high energies. These wave-particle interactions depend upon the characteristic properties of the wave mode. Hence, determination of the wave properties is a fundamental part of understanding these interaction processes. Using data collected during the Cluster Inner Magnetosphere Campaign, this paper identifies an occurrence of magnetosonic waves, discusses their generation and propagation properties from a theoretical perspective, and utilizes multispacecraft measurements to experimentally determine their dispersion relation. Their experimental dispersion is found to be in accordance with that based on cold plasma theory
    corecore