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ABSTRACT 
 

The first demonstrations of terahertz imaging in biomedicine were made several years ago, but few data are available on 

the optical properties of human tissue at terahertz frequencies.  A catalogue of these properties has been established to 

estimate variability and determine the practicality of proposed medical applications in terms of penetration depth, image 

contrast and reflection at boundaries.  A pulsed terahertz imaging system with a useful bandwidth 0.5-2.5 THz was 

used.  Local ethical committee approval was obtained.  Transmission measurements were made through tissue slices of 

thickness 0.08 to 1 mm, including tooth enamel and dentine, cortical bone, skin, adipose tissue and striated muscle.  The 

mean and standard deviation for refractive index and linear attenuation coefficient, both broadband and as a function of 

frequency, were calculated.  The measurements were used in simple models of the transmission, reflection and 

propagation of terahertz radiation in potential medical applications.  Refractive indices ranged from 1.5 ± 0.5 for 

adipose tissue to 3.06 ± 0.09 for tooth enamel.  Significant differences (P<0.05) were found between the broadband 

refractive indices of a number of tissues.  Terahertz radiation is strongly absorbed in tissue so reflection imaging, which 

has lower penetration requirements than transmission, shows promise for dental or dermatological applications.   

 

Keywords:  refractive index, linear absorption coefficient, human tissue, terahertz pulsed imaging, medical applications 

 

1. INTRODUCTION 
 

The first demonstrations of terahertz imaging in biomedicine were made several years ago1,2 and recent advances have 

been made in the imaging of skin3,4 and teeth5 .  For most existing medical imaging techniques it is possible to estimate 

the feasibility of a desired imaging application in terms of radiation penetration and image contrast because data on the 

attenuation characteristics of human tissue are readily available.  Confident prediction of the feasibility of terahertz 

pulsed imaging in vivo has been hindered because there is currently little information available about the optical 

properties of human tissue at terahertz frequencies, so a catalogue of these properties has been established.  The data 

will ultimately allow estimation of the variability of the measurements, and allow estimates of penetration depth, 

percentage reflection at boundaries and image contrast between tissues to be made.  To correspond with the ranges 

specified in the international guidelines for safe exposure to electromagnetic radiation6,7, we define the terahertz band to 

comprise the wavelengths 2.6 µm to 20 mm (15 GHz to 115 THz).  In this paper we present the first sets of 

measurements made from a range of preserved and freshly excised healthy human tissue samples.  Measurements have 

to date been made from seven dehydrated teeth, cortical bone specimens that had been stored at 4ºC from five donors 

and freshly excised tissue from two individuals  

 

2. BACKGROUND 
 

2.1. Terahertz pulsed imaging 
Terahertz pulsed imaging is based on the pump and probe technique used in optical spectroscopy (Figure 1).  An ultra-

fast pulsed infrared laser, such as a Titanium Sapphire laser is split in two with one part used as the pump beam and the 

other as the probe.  The pump beam is used to generate terahertz pulses, while the other forms part of the coherent 

detection system and is used to measure the amplitude of the terahertz electric field after interaction with the subject.  

There are two techniques commonly used to generate picosecond pulses of terahertz radiation. Either a voltage-biased 



photoconductive antenna8 is illuminated with pulses from the ultra-fast infrared laser, or the infrared pulses are used to 

illuminate a crystal having high non-linear susceptibility9,10. The second technique is known as optical rectification or 

optical mixing and can yield pulses with frequencies up to 70 THz.   The terahertz beam is collimated and focused to a 

spot roughly 0.5 mm in diameter using parabolic mirrors. The subject is placed at the focus of the beam.  An optical 

delay stage is used to measure the transmitted or reflected terahertz pulse profile at a discrete number of time points, 

while the spatial mapping of measurements for image formation may most simply be performed using raster scanning, 

of either the subject or of the terahertz beam. 

 

 
Figure 1.  Schematic of a terahertz pulsed imaging system.  The diagram shows an arrangement for transmission imaging.      

Adaptations are possible for reflection imaging and for raster scanning of the beam rather than of the sample. 

 

Recent developments for faster image acquisition include the use of a multi-element array detector such as a charge 

coupled device for detection following illumination of the whole imaged area by the pump beam11,12.  Fuller 

descriptions of terahertz imaging systems may be found in1,13,14.  The result of the acquisition process is a 2D array 

comprising a time series (the pulse profile) at each point in the raster scan.  The acquired pulse will be broadened and 

delayed compared with a reference pulse acquired without the sample in place.  The changes to the pulse depend on the 

materials through which the pulse has been propagated and reflected.    Terahertz pulsed images are parametric images, 

which are generated by plotting parameters derived from the measured pulse or its Fourier transform.  Use of the 

Fourier transform, or other time frequency analysis techniques such as wavelets15 means that frequency dependent 

effects may be isolated.  Examples of the parameters used for imaging are given in16,17. 

It is important to recognize the differences between terahertz systems designed for biomedical imaging and those 

designed for time domain spectroscopy.   Spectra are acquired by both systems, but the systems differ in important 

ways.  Spectroscopy instruments tend to be fixed pieces of laboratory instrumentation associated with other major items 

such as synchrotrons or free electron lasers.  In contrast, systems designed for imaging in biomedicine are intended to 

portable, or at least with the potential to be installed in standard hospital rooms.  In spectroscopy there is no requirement 

for information on spatial organization in bulk tissue, and so the systems are designed to measure specially prepared 

samples, usually of the molecular components of tissue rather than tissue in bulk.  The goal is to identify characteristic 

sharp molecular absorption peaks. The measurements are made at the highest spectral resolution achievable without 

concerns about heating the sample or acquisition time.    Spectroscopic terahertz beam power could be of the order of 

20 W, but the mode of terahertz generation in imaging systems means that the terahertz beam power is very much lower 

- currently the average power is under 1 mW.   This means that in terms of hazards from heating, the imaging systems 

comply with existing guidelines for human exposure to electromagnetic radiation18, but a spectroscopic system may not.  

Spectral resolution is of lower priority in imaging, partly from pragmatic concerns about the time available for imaging, 

but also because it is recognized that in bulk tissue there are three confounding factors that affect the acquisition of 

sharp molecular absorption peaks 

• Tissue samples are complex, with several molecules, which makes analysis more difficult 

• In samples with many chemical environments absorption will occur over a spread of wavelengths, meaning that 

narrow bands do not occur 

• Strong absorption by water may mask out absorption by other molecules. 

It is emphasized that the spectra presented here were measured from bulk tissue on an imaging system. The spectra 

therefore do not have the exquisite spectral detail associated with pure molecules seen in time domain spectroscopy, but 



the broadband behavior, and characteristic features seen over ranges of frequency rather than at precise frequencies, are 

expected to be of value. 

 

2.2. Frequency dependent optical properties 
The range of frequencies that comprises the terahertz band straddles both the region conventionally approached using 

optical properties (2.6 µm to 1 mm) and the region approached using dielectric properties of materials (1 mm to 20 

mm).  In this work we have considered the behavior to be optical in character across the full bandwidth used.  This 

follows guidance in a recent standards document19, where exposures are considered to be quasi-optical for all 

wavelengths under 50mm.  The changes to a terahertz pulse caused by its passage through a medium are determined by 

the complex refractive index of the medium, which is a function of frequency, )()()(~ ωκωω inn += .  The complex 

refractive index incorporates both time delays (or phase changes in the Fourier domain) and intensity changes caused by 

absorption.  The linear absorption coefficient, µ(Ȧ), is related to the imaginary part, ț(Ȧ), of the complex refractive 

index as follows 
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For addressing pulse detectability however, it is necessary first to consider the broadband optical properties for a given 

system (see further discussion in section 2.4), that is those measured in the time domain only using the attenuation and 

delay of the main pulse peak. The broadband optical properties, are not functions of frequency but do depend on the 

frequency make-up of the pulse, and are written here as n and  µ. 

Previously published articles on measurements made in the millimeter wave region describe tissue behavior in terms of 

dielectric rather than optical properties.  To allow comparison with the measurement here, the following equations were 

applied to convert to refractive index n(Ȧ) and absorption coefficient µ(Ȧ): 
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2.3. Literature overview 
The definition of the terahertz band used here is 2.6 µm to 20 mm (15 GHz to 115 THz).  This overlaps the region 

usually described as the far infrared, with wavelengths between 50 µm and 1 mm, and the region of millimeter waves 

which is at the extreme of the microwave region.  The search for previous human tissue measurements thus included 

these descriptions and their synonyms, as well as "terahertz".  Reports of measurements on non-human tissue were 

excluded. 

An early paper on measurements in the terahertz band (described as far infrared by the authors) was by Barker et al in 

197520.  They performed a number of measurements using an incoherent detection technique, which allowed 

measurement of attenuation parameters but not refractive index.  Although measurements of other materials were made 

at several wavelengths, the results presented for human bone, blood and water were measured only at 337 µm (0.9 

THz).  If Beer's Law is assumed, then the values found for the attenuation coefficient were respectively 39 cm-1,   

48 cm-1, 274 cm-1 and 335 cm-1.  Note that the attenuation includes reflection and scattering losses as well as absorption, 

and little information appears in the article about the experimental methods used.  More recent terahertz frequency work 

uses coherent detection, and the early reports are in the form of case studies or demonstrations with only one or two 

samples.  Images of human tissue, prepared using standard histopathology techniques, without estimates of the optical 

properties, have been published by Knobloch et al21,22.  Cole et al3 have demonstrated reflection imaging in vivo of the 

stratum corneum epidermis boundary in the skin of the forearm and hand.  The work was performed using a system 

giving a spectrum with its peak output at 300 GHz and a useful output up to 3 THz.   It was possible to illustrate 

changes in hydration within the stratum corneum.  Woodward et al have used reflection methods to image 15 freshly 

excised samples of healthy human tissue and basal cell carcinoma4,23,24.   This work was performed using a frequency 

bandwidth from 0.1 to 3.0 THz.  They demonstrated differences between diseased, normal and inflamed tissue.  The 

tissue differences could be seen on sets of images acquired 1 hour 50 minutes apart, so dehydration during this time was 



not a difficulty.  Some histological correlation was shown.    Ciesla et al25 examined human tooth enamel and dentine 

using a system with a frequency bandwidth from 0.5 to 2.7 THz..  Measurements from a 200 µm slice gave a bulk 

broadband refractive index of 3.2 for enamel and 2.6 for dentine.  Further work5 demonstrated that it was possible to 

measure enamel thickness accurately enough for comparative measures.   In similar work on teeth, reported in the 

microwave literature, Hoshi et al26,27, made 10 measurements of the complex permittivity of tooth enamel and dentine 

over a range from 0.04 to 40 GHz.   Conversion to refractive index using equation (2) gives a value for healthy tooth 

(the average of enamel and dentine) of n(Ȧ) = 2.61 at 35 GHz. The refractive index is higher for enamel than dentine, 

but it is not possible to make an exact conversion from the data presented in the paper.  They further compared 

measurements from healthy parts of each of five teeth to areas with caries.   At 35 GHz the transmission coefficient 

though a halved tooth was lower in all cases for the caries, but it is unclear if correction for path length differences was 

applied. 

There is an extensive literature, prompted by developments in electromagnetic dosimetry related to mobile telephony, 

on biological tissues at microwave frequencies.  This is reviewed by Gabriel et al28.  In this wavelength range the 

behavior is described in terms of the complex dielectric properties, rather than optical properties.  The bulk of the work 

is in the frequency range 100 MHz to 2 GHz, and on non-human tissue; but Gabriel et al include three articles on human 

tissue reporting measurements at frequencies above 15 GHz.  The earliest is from 195029 which reports dielectric 

measurements made at 1.27 cm (23.6 GHz) on tissue taken from surgical operations and measured at 37 ºC.  The 

number of specimens is not given, but measurement accuracy is estimated to be better than ±10%.  Conversion to 

refractive index using equation (2) gives values as follows for tissues that are also measured here:  skin n(Ȧ) = 4.97, fat 

n(Ȧ) = 1.87, bone n(Ȧ) = 2.52.  Alison and Sheppard30 in 1993 measured the dielectric properties of blood up to 90 

GHz, with n(Ȧ) = 3.4 after conversion.   They found it difficult to obtain reliable measurements because of coagulation 

within the equipment, but their results at lower frequency were comparable with those of other authors.  Since Gabriel's 

review, Ghodgaonkar et al31 have reported measurements of the complex permittivity of human skin in vivo in the 

frequency range 28-57 GHz.      Measurements of the average properties of epidermis and dermis were made on only 

one subject; conversion to refractive index using equation (2) gives a value n(Ȧ) = 2.4 at 57 GHz.  It is noted that due to 

differences in water content, blood content and epidermal thickness the complex permittivity (and hence refractive 

index) of skin in vivo is expected to be lower than in excised tissue.          

 

2.4. Potential applications 
With knowledge of the optical properties of various tissues it is possible to start addressing questions about imaging 

feasibility.  The most basic question is "What thickness of tissue will reduce the signal to the level of noise?", to 

establish if a signal can be detected.  Follow-up questions, which are not addressed here, might be "Will the primary 

pulse be well separated from pulses arising from multiple reflections?" and "What percentage change in optical 

parameters can be distinguished from normal biological variability?"  

Terahertz pulsed imaging measurements are made in the time domain, and the measured pulse is the broadband 

response of the tissue to the range of frequencies contained in the incident pulse.  Each terahertz pulsed imaging system 

has a unique pulse shape, which is dependent on both the characteristics of the pump laser pulse and the method used 

for generation of terahertz radiation.  As the absorption coefficient is strongly dependent on frequency, it is expected 

that the broadband transmission characteristics for different terahertz pulsed imaging system will differ.  Questions of 

detectability require the measurement of a pulse in the time domain and are therefore addressed using broadband tissue 

properties rather than by careful consideration of each frequency separately.  Only if a pulse can be detected in the time 

domain is Fourier transformation possible, and at that point it is relevant to consider frequency dependent 

characteristics.  

Simplified models of the transmission, or reflection, of a pulse through layered media can be developed using the 

Fresnel equations and Beer's law.  The Fresnel equations (4)-(6) express the reflection and transmission coefficients at 

boundaries in terms of the refractive indices of the two media. 
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If d2 is the distance of propagation and µ2 is the bulk linear absorption coefficient in medium 2 for the broadband pulse, 

then the intensity propagation coefficient is given by 



( )222 exp dP µ−=  (6) 

The measured intensity, S after passing through the chosen construction of layered media is the incident signal intensity 

E multiplied by the product of the relevant values of R, T and P. 

It is generally accepted that the minimum signal that is detectable is one with a value three times that of the noise32.  

Assuming that the noise level is the same for both incident and transmitted pulse, then the minimum detectable signal 

occurs when S/E =3/SNR, where SNR is the signal to noise ratio of the incident pulse.  Thus in each scenario, the 

threshold sought to determine the limit of detectability is 

SNRE

S 3
≥  

(7) 

 

In this article we consider the basic feasibility of the following potential medical applications:   

• Transmission imaging of the skin, perhaps through the web of skin in the space between thumb and first finger or a 

pinch on the back of the hand.  This kind of measurement could have applications in the assessment of skin 

diseases and their treatment, and for measuring the effect of products such as moisturizers. 

• Reflection imaging of the dermis epidermis boundary.  Reflection imaging of skin would allow assessment of skin 

on any part of the body.  The ability to visualize this boundary gives an indication of the depth to which features 

such as tumors may be seen, which is important for treatment and prognosis.  Note that knowledge of depth 

resolution will also be required for this application. 

• Transmission imaging of the tooth.  It is hoped that terahertz imaging may be valuable for the detection of early 

caries, by helping visualization of demineralized areas.  The expectation is that the microscopic porosities caused 

by demineralization may be detectable with terahertz pulsed imaging because they fill with saliva which is more 

absorbing than enamel.  This is also the basis for electrical conductivity measurements33, where the saliva forms a 

conducting path that would not otherwise be present.  

• Reflection imaging of the enamel dentine boundary in the tooth.  Again the goal would be the detection of caries.  

The ability to locate the enamel dentine boundary would mean that demineralized regions could be correctly 

assigned to lying within enamel or dentine.  

• Transmission imaging, with potential for computed tomography (CT), of the distal interphalangeal (DIP) joint.  

Terahertz CT of the surface of a dehydrated turkey femur has recently been demonstrated34,35.  

In section 3.3 simple models based on the equations (4)-(6) are derived for each case, and the measured optical 

parameters applied.  Note that a non-detectable pulse could also arise from a pulse experiencing such a large time delay 

that it did not arrive until after the measurement period.  For the tissues considered here it was found that the absorption 

effects were dominant, and so delay effects have not been included in the analysis. 

 

3. METHODS 
 

3.1 Optical parameters 
In the time domain, the attenuation of the peak pulse amplitude was measured to obtain an estimate of the broadband 

linear attenuation coefficient, µ.  For a sample thickness x, and assuming negligible surface reflection and scattering 

losses, if I0 is the incident pulse intensity, and I the transmitted pulse intensity, from the Beer-Lambert law 

( )x
I

I µ−= exp
0

 
(8) 

where µ is the linear absorption coefficient.  The influence of reflection losses was removed by making measurements 

at a number of different thicknesses and plotting ln(I/I0) against thickness.   

Measurements of the time delay of the peak of the pulse were used to estimate the broadband refractive index, n.  For a 

sample thickness x, and assuming negligible surface reflection losses, if c is the velocity of light in vacuo then the time 

delay, t, for the transmitted pulse peak, is given by 

c

xn
t

)1( −
=  

(9) 

Measurements were made at a number of different thicknesses and t plotted against x.    

In both cases, for the larger thicknesses of sample the magnitude of the transmitted signal was comparable with that of 

the noise. An inclusion criterion was defined so that points were only included for the determination of the slope if 



I > 0.01 I0.  If fewer than 3 points were available, then no value was calculated. The slope and its standard deviation 

were found in each case using a least squares fit.  

The frequency dependent linear attenuation coefficient µ(Ȧ) was found by assuming that the Beer-Lambert Law was 

valid in the frequency domain and applying equation (10)    

( )x
I

I
)(exp

)(

)(

0

ωµ
ω
ω

−=  
(10) 

Calculation of n(Ȧ) is not included in this paper.  The refractive index is almost constant with frequency, with a value 

close to the broadband refractive index. 

 

3.2 Tissue measurements 
The anonymized cortical bone samples had previously been used in a study to compare CT number and Young's 

modulus36.  Local research ethics committee approval was obtained for further use of the specimens in this work.  The 

method used for measurement of Young's modulus meant that the bone was already cut into small beams with cross 

section approximately 2 x 1 mm.  These proved suitable for terahertz pulsed imaging.  The cortical bone specimens 

were harvested from five pairs of human femora and stored at -18ºC before thawing for CT scanning and sample 

cutting, after which they were stored in saline solution at 4ºC.  These samples may not therefore be described as freshly 

excised.  From a total of 180 samples, 14 have to date been measured in this work. A total of 59 single point 

measurements were made from the 14 bone specimens.   

Local research ethics committee approval was obtained to use teeth collected in the Leeds Dental Institute for this study. 

Informed consent was given by patients for use of the teeth for research purposes, and the teeth were subsequently 

anonymized.  Orthodontists prepared the teeth by cleaning out and bleaching the pulp chamber and then the tooth was 

autoclaved.  Each tooth was sectioned in the coronal direction to obtain slices ranging in thickness from 100 to 500 µm.  The 

slices were not rehydrated before measurement. 116 measurements were made from seven teeth as indicated in Table 1. 

 

Tooth slice thickness 

 / µm 

Number of  

enamel  

measurements 

Number of  

dentine  

measurements 

1 80 2 0 

2 270 11 16 

3 330 12 15 

4 460 8 12 

5 500 11 4 

6 500 4 11 

7 1000 5 5 

Table 1: Summary of 116 tooth samples from seven donated 

teeth. 

 

 

Material Number of  

donors 

Number of  

point  

measurements 

Deionized water Not applicable 16 

Skin 2 36 

Adipose tissue 2 37 

Striated muscle 2 37 

Vein 2 33 

Artery 1 12 

Nerve 1 12 

Table 2: Summary of freshly excised tissue samples 

 

Neither bone nor tooth samples were freshly excised, so local research ethics committee approval was sought and 

obtained for harvesting of tissue from legs amputated during vascular surgery.  To date, informed patient consent has 

been obtained by the surgeon for the use of two such limbs, from male donors aged 64 and 71.  The tissues sampled 

were skin, adipose tissue, striated muscle, vein, artery and nerve.  Samples were placed in saline after excision and 

measurements were made within 48 hours of excision.  No healthy artery samples were obtainable from donor 1, and 

measurements could not be made from the diseased tissue because of difficulties in making the samples of uniform 

thickness.  So artery measurements were made on tissue from donor 2 only.  Similarly, no nerve samples were acquired 

from donor 2, so nerve measurements were made on tissue from donor 1 only. 

• The tooth and bone samples were held in air at the focus of the terahertz imaging system, without an enclosing 

medium. 

• For the freshly excised tissue samples, small sections were cut to approximately the right thickness and pressed 

between two TPX windows separated by spacers to the required thickness: 50, 100, 150 and 200 µm.  Separate 

reference pulses were obtained for each sample thickness by replacing the sample with an air gap of the same 

dimension. TPX (poly-4-methylpent-1-ene) windows were chosen because TPX has low absorption and constant 

refractive index over the range of frequencies of interest37 

• For the liquid samples, each sample was held in a polyethylene bag between two slices of polystyrene.  The 

assembly was compressed using a mechanical translation stage to change the path length through the liquid by 



known amounts, giving path length changes of 0, 25, 50, 75 and 100 µm.  The reference pulses were obtained 

through a baseline thickness of liquid of 250 µm for water. The polystyrene was chosen because in the terahertz 

band it has low attenuation and a refractive index equal to that of air38. 

Thickness measurements for each sample at the location of measurement were made using a digital micrometer that 

read to ± 5 µm.  For each point measurement, a time series was recorded comprising 256 points at 80 fs intervals.   This 

choice gave a frequency resolution of 50 GHz, a maximum frequency after Fourier transformation of 6.25 THz.  The 

point measurements of E-field amplitude were squared to obtain intensity values.  The temperature of the scanning 

room was maintained by air conditioning at approximately 18-20 °C.  The system was not purged with nitrogen, which 

is a technique sometimes used to reduce contributions to the spectrum from water and carbon dioxide.  The following 

parameters were calculated from the acquired data: 

• Mean and standard deviation broadband refractive index (equation (8)) 

• Mean and standard deviation broadband absorption coefficient (equation(9)) 

• Mean and standard deviation of linear absorption coefficient over frequency (equation (10)).   

Two sample t-tests were performed to compare the mean values of the broadband parameters for the various tissues at 

the 95% level of significance. 

 
3.3 Potential applications 
3.3.1 Transmission imaging of skin 
In this scenario, the pulse to be detected travels from air to skin and back to air again.  For a detectable pulse, from 

equation (7), 
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where medium 1 is air, medium 2 is skin, and T and P are defined in equations (5)-(6).  Substituting for P2   
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where d2 represents the thickness of skin and µ2 the absorption coefficient of skin.   

In this and in scenarios 3.2.2-3.3.4, following substitution of the measured values of refractive index and absorption 

coefficient, d2 was plotted against SNR and error limits were found by evaluating the derived expression using the 

measured values ± their standard deviation.  

 

3.3.2 Reflection imaging of the dermis/epidermis boundary 
In this case the pulse to be detected must travel a path from air to epidermis, through a thickness d2 mm of epidermis, 

undergo reflection at the epidermis/dermis boundary, re-cross d2 mm of epidermis and be transmitted from epidermis to 

air.  For a detectable pulse, from equation (7) 
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where medium 1 is air, medium 2 is epidermis, medium 3 is dermis and T and P are defined in equations (5)-(6).  

Substituting for P2  
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where d2 represents the thickness of epidermis and µ2 its absorption coefficient.  The measured values for skin were 

used to represent the epidermis (medium 2) and the measured values for adipose tissue to represent dermis (medium 3). 

 

3.3.3 Transmission imaging of the tooth 
This scenario is the same as that described in section 3.3.1, but with skin replaced by tooth enamel.    

 

3.3.4 Reflection imaging of the enamel dentine boundary in the tooth  
In this case the pulse to be detected must travel a path from air to tooth enamel, through a thickness d2 mm of enamel, 

undergo reflection at the enamel/dentine boundary, re-cross d2 mm of enamel and be transmitted from enamel to air.  

This scenario is the same as that described in section 3.3.2, but with epidermis replaced by enamel, and dermis by 

dentine. 



 

3.3.5 Transmission imaging, with potential for computed tomography, of the DIP joint  
A path representing the most attenuating projection though a male adult's DIP joint was measured from an MR image to 

comprise 0.4 mm skin, 3.2 mm soft tissue, 1.1 mm cortical bone, 10 mm trabecular bone, 1.1 mm cortical bone, 3.2 mm 

soft tissue, 0.4 mm skin.  For a detectable pulse 

SNR
TPTPTPTPTPTPTPT

E

S 3
21232343454545434323212 ≥=  

where medium 1 is air, medium 2 skin, medium 3 soft tissue, medium 4 cortical bone and medium 5 trabecular bone.  

For an initial estimate of detectability this can be reduced to a best case situation comprising a single layer of the least 

attenuating material, which is cortical bone.  If this model is shown to allow passage of a detectable pulse, then the 

model may be refined to include the other components.  For a single layer of cortical bone in air, the equations are the 

same as those used for scenario 3.3.1, but with skin replaced by cortical bone.  In this case however, the equation was 

used simply to determine if the value of SNR required for a detectable pulse through d2= 19.4 mm was under 10000, 

which is a potentially attainable SNR39. 

4. RESULTS 
4.1 Tissue measurements 
 

Material N n <n> Nµ <µ>/cm-1

Deionized water 16 2.04 ± 0.07 13 225 ± 21 

Tooth enamel 44 3.06 ± 0.09 44 62 ± 7 

Tooth dentine 72 2.57 ± 0.05 72 70 ± 7 

Skin 36 1.73 ± 0.29 36 121 ± 18 

Adipose tissue 37 1.50 ± 0.47 37 89 ± 23 

Striated muscle 37 2.00 ± 0.35 37 164 ± 17 

Cortical bone 59 2.49 ± 0.07 59 61 ± 3 

Vein 33 1.58 ± 0.49 33 110 ± 43 

Artery 12 1.86 ± 0.40 24 151 ± 25 

Nerve 12 1.95 ± 0.46 12 246 ± 27 

Table 3: Values for broadband refractive index (n) and broadband linear attenuation coefficient (µ).  Mean values are shown ± one 

standard deviation. Nn and Nµ were the number of measurements used to calculate the mean values for refractive index and linear 

attenuation coefficient respectively (see section 3 for the number of donors) 

 

The broadband refractive index and attenuation coefficient results are shown in Table 3.  For refractive index, the two 

sample t-test showed a significant difference (P<0.05) between the mean values for all pairs of tissue except water and 

striated muscle, water and artery, water and nerve, skin and vein, skin and artery, skin and nerve, adipose tissue and 

vein, striated muscle and artery, striated muscle and nerve, vein and artery.  For linear attenuation coefficient,  the two 

sample t-test showed a significant difference (P<0.05) between the mean values for all pairs of tissue except tooth 

enamel and cortical bone, skin and vein.   

The variation of linear attenuation coefficient with frequency appears in Figure 2, the results for water are shown in all 

three figures for comparison.  The effect of increased absorption at 1.2 THz can be clearly seen in the measurements 

from water.  Decreased absorption at approximately the same frequency is seen for vein and nerve in Figure 2c, which 

may be related to increased environmental absorption affecting the reference pulse.   

 

4.2 Potential applications 
The calculated maximum thicknesses for detection of a pulse are shown in Figure 3 (a-d) for the four scenarios 

described in sections 3.3.1-3.3.4.  Transmission imaging of the skin does not appear to be practical, but reflection 

imaging is more promising.  For reflection imaging of the epidermis dermis boundary we made the assumption that the 

properties of the dermis could be represented by our measurements for adipose tissue.  The reflection coefficient at such 

a boundary is just 0.5 %, and the effect of this is seen in the small predicted imaging depths in Figure 3b.  However, the 

average thickness of epidermis is 0.05 to 0.15 mm40, so the boundary will be accessible to terahertz pulsed imaging in 

areas of the body where the epidermis is thinner.  Certainly, the stratum corneum, which may be as thin as 0.01 mm 

depending on location is accessible, subject to the restrictions of depth resolution.  Similarly, imaging in dentistry is not 

ruled out by the measurements presented here in Figure 3d.  For the scenario described in section 3.3.5, it was found 

that the necessary SNR for a detectable pulse through 19.4 mm of cortical bone was over 10000, thus terahertz CT 

based on projection imaging of the adult DIP joint would be infeasible using our current arrangement. 
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Figure 2.  Measured linear attenuation coefficient as a function 

of frequency.  Error bars indicate ± one standard error of the 

mean (standard deviation/N½), N is the number of samples. a) 

Water, tooth enamel, tooth dentine, cortical bone b) water, skin, 

adipose tissue and striated muscle.  c) water, vein, artery and 

nerve. 
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Figure 3.  The calculated maximum thickness of tissue for a detectable pulse.  a) transmission imaging of skin, b) reflection imaging 

of the epidermis/dermis boundary, c) transmission imaging of tooth enamel, d) reflection imaging of the enamel/dentine boundary. 

 



5. CONCLUSIONS 
 

The first systematic measurements of human tissue optical properties in the terahertz band (useful input pulse 

bandwidth approximately 0.5 to 2.5 THz) have been presented here.  These data represent the first part of a larger study, 

and freshly excised samples from only two individuals have so far been included, thus the results must still be treated as 

preliminary.  The study has some further limitations, which may affect its comparability with other work. The hydration 

level of tissue has a strong influence on the optical properties.  The tooth samples were measured in a dehydrated 

condition, and future work will aim to ensure that samples are hydrated to the same degree as one another, and to 

maintain that hydration throughout the measurement period.  The freshly excised tissue was all measured within 48 

hours of excision, but was not maintained at body temperature, which will affect the results compared with values 

obtained in vivo. Whilst storage in saline prevented the samples from drying out, different tissues took up the saline in 

differing degrees.  It has been noted41 that results from fatty tissue are strongly affected by the degree of blood 

infiltration, again meaning that there will be differences between excised tissue and tissue in vivo.  The absorption 

coefficients presented may include attenuation due to scattering as well as absorption.  A major point is that the 

feasibility calculations were performed using the broadband optical properties, as the method used to assess feasibility 

was based on the requirement that a pulse could be detected in the time domain.  However, it is seen in Figure 2 that the 

absorption coefficient increases with frequency.  For example for tooth enamel the increase over the range 0.5 THz to 

1.5 THz is almost two fold.  Thus systems using terahertz pulses with a different frequency composition from ours, and 

especially those with a higher proportion frequencies at the lower frequency end of the terahertz band, would be 

expected to penetrate a greater thickness of tissue.  A further assumption in the feasibility calculations was that the 

noise level in both incident and detected pulse was the same.  This assumption may have led to pessimistic estimates of 

detectability.   

 

The frequency dependent absorption meant that higher frequencies in the pulse were absorbed and were rarely present 

in the detected pulse, a process that could be termed "beam softening". When terahertz pulsed imaging is used in vivo, it 

may be important to consider ways of removing higher frequencies before they reach the subject.  It is undesirable for 

imaging to make use of only the low frequencies, with the higher frequencies contributing to the heating and potential 

damage of the tissue whilst making no contribution to the image.   

 

The results obtained are consistent with the expected larger absorption coefficient with greater hydration.  For example, 

in Figure 2b, the absorption coefficient of striated muscle is greater than that of adipose tissue, which is a tissue with a 

lower proportion of water.  In Table 3, a similar difference is seen in their refractive indices.  The high proportion of 

water in striated muscle is emphasized by the similarity of its refractive index to that of water, though their absorption 

coefficients differ.  Similarly, the compositional relationship between tooth enamel and cortical bone can explain their 

similar absorption coefficients, but they do not share their refractive indices. Whilst no characteristic spectral features in 

the form of absorption peaks have been demonstrated, except in water, Figures 2 does show differing profiles of 

absorption coefficient with frequency for the different tissues.  The uniqueness of these profiles, and of indices 

representing differences between them, is a topic for further investigation. 

 

Regarding the refractive index of tooth enamel and dentine, the results are similar to those reported by Ciesla et al25 in 

the terahertz band and by Hoshi et al26,27 at 35 GHz. The value of n(Ȧ) = 1.73 ± 0.29 that was measured here for skin is 

comparable with the value of 2 assumed in the work of Cole et al3, but is lower than that measured by Ghodgaonkar et 

al31 in vivo at 57 GHz or the 1950 measurement at 23.6 GHz.  It is likely that the better agreement for the tooth results is 

related to the low levels of hydration in the tooth samples, while measurements in skin are likely to vary substantially 

without careful control of measuring conditions.  Absorption coefficient results obtained were of the same order of 

magnitude as the early, incoherent, measurements reported by Barker et al20, and rank in the same order. Although 

reflection losses were included in their attenuation coefficients, the values for bone and fat are lower than those reported 

here, and not higher as might be expected.  However, the broadband nature of our measurements, and the effect of the 

increased absorption seen for higher frequencies, may explain the discrepancy. 

 

In future work, these measurements of optical properties will be used in further calculations to address questions about 

discriminating pathology from biological variability, optimizing the image contrast-to-noise ratio, methods for tissue 

differentiation using bands of frequencies and the need for index matching.  An important area is modeling alternative 

modes of acquisition.  For example, Woodward et al have demonstrated4, that reflection imaging may not necessarily 



involve the identification of major boundaries (as in B-mode ultrasound), but instead the technique may be used to 

analyze reflections from within a gradually changing layer of tissue.  These results will be of value in modeling this 

type of imaging.  Similarly, it would be possible to assess the usefulness of using pulses reflected from several 

alternative features as references for comparison with the pulse reflected from pathology.   
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