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Abstract-The severity of global magnetic disturbancesin
Near-Earth space can crucially affect human life. These
geomagnetic disturbances are often indicated by a Kp
index, which is derived from magnetic field data from
ground stations, and is known to be correlated with solar
wind observations. Forecasting of Kp index isimportant
for understanding the dynamic relationship between the
magnetosphere and solar wind. This study presents 3
hoursahead prediction for Kp index usingthe NARMAX
model identified by a novel robust model structure
detection method. The identified models are evaluated
using 4 years of Kp data. Overall, the modelswith robust
structure can produce very good K p forecast results and
provide transparent and compact representations of the
relationship between Kp index and solar wind variables.
The robustness and conciseness of the models can highly
benefit the space weather forecast tasks.

Keywords-Space weather; Kp forecast; NARMAX
model; Robust model; Structure selection.

. INTRODUCTION

Many advanced systems and equipment on o
navigation systems
communication systems, satellites, and power grid, ar
sensitive to space weather changes. Especially wh
severe situation such as magnetic storm occurs, the
systems and equipment become paralyzed amfl
unreliable. In order to understand and forecast th?\I
geomagnetic activity, theg{planetarische Kennziffer) 3
index was first introduced by Bartels in 1949 [1]. The

nearby earth, for example,

input, based on which the 1 hour ahead model
prediction performance is much better than most of the
existing method$8]. More recently, Rice NN models
have been introduced in [24lany of the reported NN
models have achieved high correlation coefficients, but
it turned out that there were some significant lags in the
model predictions, which make the forecast not as
useful or reliable as it was expected. In other words,
models which generate delayed forecast might fail to
detect magnetic disturbances and can cause crucial
losses. Probably the lags in the predictions are due to
the effect of the inclusion of autoregressive variables in
the models. Therefore, a re-evaluation of the model
predictive performance in particular the overcoming of
delay of the predictions becomes highly necessary.

Another approach is the NARMAX method which
has been widely used for space weather forecasting
including Kp index forecasting (see for example
[2][11][12]). In comparison with NN models,
NARMAX model can provide a nonlinear transparent
representation of the system with only a few number of
Effective model terms selected by using an orthogonal
least squares (OLS) algorithm [10]. The first
KARMAX Kp model was introduced in 2001 [11]. The

§Hodel uses solar wind variables and previous Kp as

ﬁ?puts to generate 3 hours ahead prediction for Kp index
he correlation coefficient is 0.77. Recently, the
ARMAX Kp models have been extended to generate
hours, 6 hours, 12 hours and 24 hours ahead
predictions of Kp, using both sliding window and

values of Kp index range from 0 (very quiet) to 9 (very : -
disturbed) in 28 discrete steps, resulting values of 0, O+r,ecur5|ve prediction approaches [12].

1-, 1, 1+,2;2, 2+, ..., 9 [2]. The relatively long record In general, the above mentioned two models, that is,
makes Kp index an important dataset to discover theeutral networks and NARMAX models, both have
relationship between magnetic disturbances and spaeehieved good performances on Kp forecast. However,
weather. there still exist large room for improvement. This is due
The correlation between Kp index and solar windto the fact that though NN models can achieve relatively

. X : higher performances than other models, the model
parameters has been confirmed in the I|terature_(s_ee f%{ructure can be very complicated and cannot be simply
exam.ple [3]41(]) There are plenty of .StUd'e.S amiNg \ritten down. In addition, NN models often involve a
to build models to represent the relationship betwee ' !

: ; 51arge number of variables and take a long time for
Kp index and solar wind paramesemMany data based training. General NN models cannot provide a

studies use neutral network (NN) models. An early- ransparent model structure which clearly indicate

stage Costello NN Kp model was proposed in 1997 [6] . . . S
for 1 hour ahead prediction for Kp and the correlation hich model terms or variables are significant. In

coefficient between the predicted and official Kp indexcom_parison with NN models, NARMAX models use

reached 0.75. Later in 2000, Boberg [7] developed a Knonlmear polynomial structure and often only r)eed a
e ) ’ Rmall number of effective model terms to describe the

NN model which slightly outperformed CostélddNN system

model with a correlation coefficient of 0.77. Another '

similar NN model was then introduced in 2005 by Wing Based on the above observations, this study

et al [2] where a pre-estimated nowcast Kp that isproposes a novel robust model structure detection and

highly correlated with official Kp was used amodel  selection method to improve the model robustness and
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predictive power. This is especially useful for thea problem the orthogonal least squares (OLS) algorithm
following two scenarios of data based modellin was introduced [10H6] in the late1980’s. The OLS
problems: i) a large dataset or multiple datasets (e.g. algorithm uses a simple but effective index, called the
number of datasets for a same system but generatedror reduction ratio (ERR) [10], to measure the
under different experimental conditions) are availablesignificance of candidate model terms and generate a
i) modelling for a non-stationary system where rank according to the contribution made by each of the
although the key system dynamics can be representadodel terms to explaining the variation of the response
using a single model structure, different modelvariable. The sum of the error reduction ratio (SERR)
parameters are needed to adaptively reflect the chan@&8] can be used to indicate how much of the variation
of system behaviors at different times. The proposedh the response variable can be explained by the
algorithm is applied to build NARMAX models for Kp selected model terms. The OLS-ERR algorithm can be
index prediction. summarized as follows [18][19]:

The paper is organized as follows. Section 2 briefly A polynomial NARX model can be written as the
introduces the NARMAX model and OLS algorithm. following linearin-the-parameters form
The new proposed robust model structure selection oM
method is given in Section 3. Section 4 provides a y(K) = Zm=1OmPm (k) + e(k) @
description of the data. The results are given angvhere ¢,,(k) = ¢,,(9(k)) are the model terms
analyzed in section 5iEstudy is concluded in section generated from the regressor vecégk) = [y(k —
6. 1), .., y(k— ny), uk—1),..,u(k—ny)] T, 6, are

. NARMAX MODEL AND OLS ALGORITHM the ynknown paramters ard is .the number of'

) o candidate model terms. Now, consider a term selection

This stl_de_focus_es on linearthe-parameters problem for model (2). Leg = [y(1), ...,y(N)] T be
representation including NARMAX model. The OLS 6 gutput vector of N sampled observations &pd=
algorithm is used to detect the significant model termst ©m(1) ©m(N)] T bethe vector formed by thetin
and establish parsimonious model structures. model télr}r“(mmz 1,2,...,M). Then a dictionary of all
A NARMAX Model the candidate bases can be written Bs=

The nonlinear autoregressive moving average with. 81 -+ 8u} - The term selection problem is actually to
exogenous inputs (NARMAX) model [13], i 1nd @& subseD, = {81, ., 8,} of n model terms,
parametric modelling framework that includes manyfrom the full set D, wher@l,, ..., 1,} € {1, 2,..,M}, 0
traditional linear and nonlinear models such as ARthat y can be explained using the combination of
ARX, ARMA, ARMAX and NARX as special cases. {8y, .., 8_}:

NARMAX method is powerful for black-box system n

identification where the true model structure is assumed y =Xt 6, 8, +e @)

to be unknown or unavailable. NARMAX models have  The model terms are selected using the ERR index.
a number of attractive advantages, for example, theq, the full dictionaryD, the ERR index of each

model structure can be determined in a stepwise wWayandidate model term can be calculated by:
(with the most important model terms being selected

first), the identification procedure is easy to compute, ERR®M[i] = or 51%2 4)
and the final model is compact and transparent and easy CRICHE

to communicate. Due to these, NARMAX models have,nerei = 1, 2,..,M, The first selected model term
been applied to successfully solve a wide range of reglyn then be identified as:

world problems in various fields including ecological

[14], environmental [15], geophysical [9][16], medical l; = arg max {ERR®[i]} (5)
[17], societal [20] and neurophysiological [21 1sisM
sciences. Then the 1st significant model terms of the subset

can be selected ag = 8, , and the 1st associated

The general NARIAX model structure is [19]: orthogonal variable can be definedqas= §,,. After

y(t) = F[y(k - 1), ...,y(k - ny), u(k — removals; from D, the dictionanp is then reduced to
1), ..,u(k —ny),e(k —1),...,e(k — ne)] (1 a sub-dictionaryDy,_; , consisting of M-1 model
candidates.

wherey(k) andu(k) are systems output and input

signals; e(k) is a noise sequence which is with zero- At steps(s=>2), the M-s+1 bases are first
mean and finite variancen,, n, and n, are the transformed into new group of orthogonalised bases

maximum lags for the system output, input and noisel qis’,qés),_...,q,(;)_sﬂ ] with  orthogonlization
F[-] is some nonlinear function. transformation as (6).

B. OLS-ERRAgorithm _18ar
dorthm - _ q¥ =8 -3y g, (6)

Although there exist some application scenarios Ar dr
where the non-linearity is known a priori and thereforewhereq,(r = 1, 2, ..,s — 1) are orthogonal vectars

desirable term clusters can be specified in advancqu (=1, 2,..,M—s+1) are the subset @fy_g,1

theg? are . mar;]y hb!?Ck 30Xt systertr_l itdengg?t‘f"tionlcomposed of unselected model terms gnd = 1,
problems, Tor Which it needs fo investgate addiional, . s 4 1) are the new orthogonalised bases.

information that can be used to detect and indicate thzle’h'é’rest of the model terms can then be identified ste
significance of the model terms. In order to solve such P
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gy step. using the ERR index of orthogonalised subsets e, = %(eg) + o+ ef,lf)) (12)
M-s+1-
T (S)a whereK is the number of sub-datasets ame- 1,
ERRO)[j] = o4 T) (7) 2 M. The first model term can then be selected as
™M@ ) 8,:
I = arg,_max,, (BRRE) ® b = are, g, u) )

The selection procedure can be terminated when Similar to that in OLS algorithm, the selected model

specific conditions are met. The number of model term{€™ 81, is removed from the candidate dictionary. At
to be included in the final model can be determined bytePs (s = 2), the dictionary consists & —s + 1

a modified GCV values [JR23]. model candidates. TheM —s+1 bases are
transformed inta new group of orthogonalised bases
.  ROBUSTMODEL SELECTIONMETHOD as in OLS algorithmThe error matrix at step s can be

Following the discussions in the previous section,€calculated and updated using the new group of bases
OLS can select the most meaningful terms to establisfA®:

a model structure. However, the algorithm is usually |'e(1) oM o™

working based on the assumption that there is only one 1 2 ., “M-s+l

group of data, based on which it finds a best model for P = eiz) egz) eﬁ)_sﬂ (14)
the system. In fact, for many real applications, the data : .. :

are usually recorded from a series of experiments under egK) egx) eg{()yrl

different experimental conditions, or the system itself is
non-stationary and needs to be observed for a long time The averaged error can then be calculated lagd t
scale. In these scenarios, the model structure might (= robust model terms can be selected as:

varying with time and/or external environmental
conditions. Due to these considerations, a novel robust
model structure selection method is developed to find a
common model structure that can better fit all the sub
datasets at a satisfactory level.

L =arg,_min,,, Enl (15)
Repeating the recursive process, a number of model
ferms can be selected to form a linemparameters
robust model structure. As each model term is selected

Letd = {8, ..., 8y} be the candidate basis vectorsby the averaged error calculated from all the sub-
which are formed by the original data, wheg = datasets, the robustness of the structure is guaranteed.
[@m(D), ., @m(N)] T is the vector formed by the'm The method can be summarized into several steps: 1).
model term(m = 1,2, ..., M) andN is the number of calculate the error matrix and averaged error of each
data points. The original data can then be regrouped &andidate model term; 2). select the model term
form K sub-dataset§d®, ..., d®] dataset through accordmg to t_he_ averaged error; 3). remove the selected
some resamping method [35], whef < d (i 1, 21T 1 e diconary and ansformed the recof bases
2,...,K) andd = [dD, ...,d®]T To find a robust g ’ P

model structure that robust to all the K sub-datasets, asntGpS until enough model terms are selected.

error matrix is calculated using the data from allkhe V. EXPERIMENTAL DESIGN
sub-datasets. In the first selection step, the error matrix )
is defined as: The Kp index was sampled every 3 hours and the
solar wind variables were sampled every 1 hour. The
[ oM el] solar wind variables are used as the model inputs and
@ @ @ Kp index is treated to be the model output. A full
yO =" & M (9)  description of the solar wind variables and derived
© : © N (=K)| variables is summarized in Table I.
lel €2 M J Table I. Kp index and solar wind variables
where e® (m=1, 2,..,Mandk=1, 2,..,K) is N}‘Z‘g‘e Df;?;'ggin
the averageq prediction errors .When tHé candidate southward component of the interplanetary magn
model term is used to approximate the dataBee Bs field
model consists of only a single model tefiy that can N solar wind density (proton density)/fcc]
best fit validation set can be written as: ,
p solar wind pressure (flow pressuraPf]
(9] : .
y=a, 8n (10) \% solar wind speed/velocity (flow speedjni/s]
wherea is the parameter for the single term. Andl_YBS V x Bs/1000
egf) can be calculated: Several derived variables are also considered, which
1 1 1 1 1 1 1 1
eg;) =F.(y — ) (11) areVz, Vs, Vs, Vs, Bsz, Bs3, Bsz andBss. It should be

_ . noted that all the models presented in this study predict
whereF, is some function used to calculate the value okp index 3 hours ahead and the model inputs are all
the indicator of averaged prediction errgris the  observed no less than 3 hours before the predicted time.
model prediction. The indicator used in this study is therherefore, the unit of time lags of both input and output

mean absolute error. The averaged error of each singi¢ 3 hours. For exampl&p(t — 1) is the Kp index
model term can then be calculated
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recorded 3 hours befokp(t) andV(t — 2) is the solar B. Robust Model with Autoregressive Variables

wind speed recorded 6 hours befo(@). The data of year 2008 are separately &toibsets

The Kp index of the most recent 5 years (2008-which are used as the subsets in robust structure
2012) are used for the case study. The data of 2008 selection process. In total, 13 model terms are selected
used for model training and data of 2009, 2010, 201by the proposed robust structure selection method. The
and 2012 are used for model testing. The maximunparameters of these robust terms are estimated from the
time lags are chosen ag = n, = 2 and the nonlinear train data of year 2008, shown in Table III.

degree is 2. Four types of NARMAX models are Table Ill. Robust model with autoregressive variables

conadgred. Th_g first type of 'model is such th.at the o Robust Term Parameter
m_odel is |dent|f|¢d using traditional OLS algon_thm, 1 Kp(t— 1) 5 4181601
with autoregressive variables (lagged output variables) T

being included in the model (such a model is referred to__2 Ve-Ds 7.9072e92
as “regular model with autoregressive variables” in 3 pt—1) X V(t—2)2 3.0237e91
later analysis). The second type is that model i$ 4 V(t—1)Tx V(t—2)4 -3.9553e01
identified using robust model selection algorithm, with| 5 Kp(t—2) 2 5647€02
autoregressive variables (such a model is referred to as g V(t—1) 7.8019e01
“robust model with autoregressive variables’). The 7 ~ N 2 4852601
third and fourth models are such that the model ar nt=1x VE=1)>

selected using only input lag variables but without using__8 nE=1xvE=12 2417501
autoregressive variableshy the traditional OLS 9 ViE—1)xV(t—1)2 -2.7148e91
algorithm and proposed robust model selection 10 n(t—1) 6.3285€02
algorithm, respectively (the third and fourth models are 11 V(t—2) x V(t—2) 2.6931e01
referred ”to a$‘5egular model without autoregre.ssive 12 V(t—2) xV(t—z)% -1.2786€01
variables” and “robust model without autoregressive 13 Vit— 1) x V(t— 2) 1 3.0246601

variables”, respectively).
Note that the model in Table 11l should read:

. . . Kp(t) = 0.542 x Kp(t— 1) + - 17
A Regular Model with Autoregressive Variables P(® p( ) a7

The OLS-ERR algorithm was employed for model The performances of regular and robust model with
term selection. The modified GCV values suggests the@Utoregressive terms are shown in Figure 1. The
a model consisting of 13 terms can be a good choice @veraged correlation coefficients of regular and ropu;t
fit the data. The estimated parameters of the 13 termg‘f,]f?d.eI are 01;748 alnd 0.759, and the avmlaraged prediction
along with the associated parameters, are shown iy ficiency of regular and robust model are3@&nd

Table II. As depicted in the OLS algorithm in Section 0->/2: respectively The overall performance of the
Il the model terms are listed in the order of theirfobust model is slightly better than the regular model.

entrance into the model in a forward stepwise way, steg1 addition, for the last two test years, the improvements
by step and one in each step. chieved by using robust structure are more significant

_ _ _ than the first two years. The reason might be that the
Table Il. Regular model with autoregressive variables robust method is able to detect the significant model

V. RESULTS

No Term (fo%f;o) Parameter terms for each short period of data, which is extremely
1 G- D 047580 | 123770100 important because there exist many severe active times
P T . . (Kp > 5) in the data. The improvement of prediction
2 3 2.0343 1.7675e+00 : :
p(t—1) xV(t—2) 2 . i performance of theses active periods would largely
3 V-1 xV({t—1)3 0.3777 4.3448e01 improve the overall performance.
4 | Kpt—1)xVv(t—2)s | 00773 | -9.9249e01
5 p(t—1) x p(t— 1) 0.1165 -3.5290e01 0.9 0.7
6 V(t—2) xp(t—1) 0.1031 | -2.0913e+00 0.85 0.65
7 t— 1) X V(t —2)2 0.0714 | -1.6569e+00 ~
p( ) X V( ) . 0.8 0.6 p—

8 | n(t—2)xBst—1)5 | 0.0540 | -3.4770e02 % w 7/ N\ A
9 | Kp(t—2)xVBs(t—2) | 00575 | 3.5096e+03 o7 o | o 0% N

E
10 | y(t—2)35xBs(t—2)5 | 0.0329 | -55428¢03 07 05

1
11 | Bs(t—1) xBs(t—1)2 0.0208 4.7001e01 0.65 0.45
12 | Bs(t—1) X Bs(t—2) 0.0296 | -2.1801e+00
0.6 0.4

13 | n(t—2)xKp(t—1) 0.0445 5.6394e01 2009 2010 2011 2012 2009 2010 2011 2012

Note that the model in Table Il should read: testyear testyear

Figure 1. Performance comparison between the regular
Kp(t) = 1.24 X Kp(t— 1) + - (16) (blue) models and robust models (red) with autoregressive

The performance of this model will be analyzed and variables Igft: Correlaé'fggiggsﬁ)'c'enmght' prediction
discussed together with the robust model with Y,
autoregressive variables in the next section The maximum correlation coefficient of the 4 test
years reaches 0.78, which is comparable to previous
best results reported in the literatufdne model with
autoregressive variables has achieved a very good
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prediction performance However, there exists a Table V. Robust model without autoregressive variables
common issue in these models with autoregressive No Robust Term Parameter
variables, that is, there is a prediction lag. This lag is 1 V(t—2) xp(t—1) 3.8385e+01
mostly caused by the inclusion of the autoregressive 2 V(t—1)3 -2.4865e+01
termKp(t — 1) inthe model, which is highly correlated 3 Vii— 1)% 2 83686101
with Kp(t), the model term selection algorithm usually T
selects it in the first step. The lag between the predictiop_* VBs(t—1)x V(t—1)5 1.7403e+00
and the corresponding measurement can be seen |in ° nt—1) xVBs(t—1) 1.8330e+00
Figure 2. The same phenomenon was also obviously 6 Bs(t—2) xBs(t—1) 7 1.4216e+01
observed in other linear and nonlinear models for 7 Bs(t—1) x Bs(t—1)7 1.9646e+01
example the NN model proposed in [2] has exactly the g nt—1) 9.6997e+00
same issue. 9 Bs(t—2) 1.5046e+00
_——————————— 10 n(t— 1) x n(t — 1) -1.2544e+01
saf Mf" it 11 Bs(t—1) X Bs(t—2) 2 -3.0055e+01
sl N)VV : .‘V‘W\JJ‘ Y () 12 V(t—2) 3 X V(t—2) 3 2.2128e+01
S Y T T ek 13 Bs(t—1) x V(t—2) 5 3.8385e+01
o] 10 20 30 40 50 60 70 a0 90 100
sample index The model in Table V should read:

Figure 2. Randomly selected 100 observed (red) and
predicted (blue) Kp values of year 2012 (robust model with ~ KP(t) = =3839 x V(t —2) X p(t —1) + - (19)

autoregressive variables) The performances of regular and robust model
C. Regular Model without Autoregressive Variables Without autoregressive terms are shown in Figure 3
] . . The averaged correlation coefficients of regular and
The regular model without autoregressive variablegohyst models are 0.669 and 0.689, and the averaged
was identified based on the same train data as thgediction efficiency of regular and robust model are
regular model with autoregressive variables, but withy 430 and 0.460, respectiveGiearly, the performance
only input lag variables. The OLS-ERR algorithm wasof ropust and regular models without autoregressiv
employed for model term selection. The selected modg}ariaples are consistent with the models containing
terms of the model, along with the associatedytoregressive variables: the overall performance of the

parameters, are shown in Table IV. robust model is better than the regular model, especially
Table IV. Regular model without autoregressiugables ~ IN the last two test years. Overall, the robust structure
No Term ERR Parameter can help to improve the model performances, with and
(100%) without autoregressive variables. Furthermore, the
1 VE-2)xpt—1) 79.0105 | -1.7336e+02 proposed robust model selection algorithm can be
2 | VBs(t—1) x Bs(t— 1)% 3.0698 | -5.3816e+00 potentially applied to big data or long time period data
3 V(t—1) 0.4643 | -2.8197e+01 modelling and prediction.
1
4 VBs(t— 2) X Bs(t — 1)1§ 0.5121 3.3031e+00 05 06
5 Bs(t—2) xBs(t—2)2 0.3814 1.2940e+01
6 p(t—1) X VBs(t— 1) 0.2651 | 1.7469e+02 0.73 085
7| ve—nxve-2i 0.3667 | 4.5787e+01 07 —%—] o5
8 p(t—1) x p(t—1) i 0.3884 | -1.9329e+02 < 0.654 \e/ W45
9 Bs(t—1) X V(t—2)% 0.2231 3.1549e+01 06 0.4
10 Bs(t— 1) X p(t— 2) 0.0893 | -1.6555e+02
11 V(t—1) xV(t—1) 0.0660 | -1.1536e+01 0.55 0.35
12 | p(t—2) x VBs(t—2) 0.0417 | 1.0354e+01 05 0.3
1 2009 2010 2011 2012 2009 2010 2011 2012
13 VBs(t—2) X V(t—2)?2 0.0419 ~28373e+00 test year test year

; . Figure 3. Performance comparison between the rethilze)
The model in Table IV should read: models and robust models (red) without autoregressiriables

Kp(t) = —173.36 X V(t — 2) x p(t — 1) + - (18) (I€ft: correlation coefficient;ight: prediction efficiency)

The performance of this model will be analyzed and In addition, it can be noted that the performance of

discussed together with the robust modei withouthe model without autoregressive variables is lower
autoregressive variables in the next section than the model with autoregressive variables. However,

the lag in the prediction has been eliminated and the
D. Robust Model without Autoregressive Variables model without autoregressive variables is also able to
detect most of the active times (Figure 4). Based on the

was identified based on the same train data as the robsa ove considerations, the robust model without
; . ; . toregressive variables can be a better choice for Kp
model with autoregressive variables, but with only:

input lag variables. In total, 13 model terms are selecte'é]dex prediction.

by the proposed robust structure selection method. The
parameters of these robust terms are estimated from the
train data of year 2008.

The robust model without autoregressive variable
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6 T
< N
g 5| I\f_'ﬁ !\“ ﬁ\y[x\
% PSalvA oo/ XOV/‘VC’\‘WMN \
o] 10 20 30 40 50 60 70 a0 90 100
sample index

Figure 4. Randomly Selected 100 observed (red) and

predicted (blue) Kp values of year 2012 (robust ehedthout
autoregressive variables)

VI. CONCLUSION

El

(10]

[11]

This study proposed a new robust model selectiof?

method for Kp index prediction. With the new selection
and without

algorithm, robust models with

autoregressive variables were obtained for 3 hourgg)
ahead prediction of Kp index. The performance of the

robust models was evaluated on the test data of 4 years.
The correlation coefficient and prediction efficiency of [14]

the
autoregressive terms),
autoregressive terms), respectively turned out tha

robust models are 0.748 and 0.759 (with
0.669 and 0.689 (without

the robust models outperform the regular models angs

more importantly, the robust model selection algorithm
issue

can successfully overcome a common

encountered in most existing Kp prediction models, that

is, there usually exist lags between the predictions an
real measurements. The advantage of a robust model‘is

6]

that it can better capture the inherent dynamics of the
whole dataset and can thus be well generalized to new
data. With this advantage, the new robust selectiof7]
method can potentially be applied to big data or long

period data modelling problems.
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