881 research outputs found

    Short-range template switching in great ape genomes explored using pair hidden Markov models.

    Get PDF
    Many complex genomic rearrangements arise through template switch errors, which occur in DNA replication when there is a transient polymerase switch to an alternate template nearby in three-dimensional space. While typically investigated at kilobase-to-megabase scales, the genomic and evolutionary consequences of this mutational process are not well characterised at smaller scales, where they are often interpreted as clusters of independent substitutions, insertions and deletions. Here we present an improved statistical approach using pair hidden Markov models, and use it to detect and describe short-range template switches underlying clusters of mutations in the multi-way alignment of hominid genomes. Using robust statistics derived from evolutionary genomic simulations, we show that template switch events have been widespread in the evolution of the great apes' genomes and provide a parsimonious explanation for the presence of many complex mutation clusters in their phylogenetic context. Larger-scale mechanisms of genome rearrangement are typically associated with structural features around breakpoints, and accordingly we show that atypical patterns of secondary structure formation and DNA bending are present at the initial template switch loci. Our methods improve on previous non-probabilistic approaches for computational detection of template switch mutations, allowing the statistical significance of events to be assessed. By specifying realistic evolutionary parameters based on the genomes and taxa involved, our methods can be readily adapted to other intra- or inter-species comparisons

    Distances to Populous Clusters in the LMC via the K-Band Luminosity of the Red Clump

    Full text link
    We present results from a study of the distances and distribution of a sample of intermediate-age clusters in the Large Magellanic Cloud. Using deep near-infrared photometry obtained with ISPI on the CTIO 4m, we have measured the apparent K-band magnitude of the core helium burning red clump stars in 17 LMC clusters. We combine cluster ages and metallicities with the work of Grocholski & Sarajedini to predict each cluster's absolute K-band red clump magnitude, and thereby calculate absolute cluster distances. An analysis of these data shows that the cluster distribution is in good agreement with the thick, inclined disk geometry of the LMC, as defined by its field stars. We also find that the old globular clusters follow the same distribution, suggesting that the LMC's disk formed at about the same time as the globular clusters, ~ 13 Gyr ago. Finally, we have used our cluster distances in conjunction with the disk geometry to calculate the distance to the LMC center, for which we find (m-M)o = 18.40 +/- 0.04_{ran} +/- 0.08_{sys}, or Do = 47.9 +/- 0.9 +/- 1.8 kpc.Comment: 31 pages including 5 figures and 7 tables. Accepted for publication in the August 2007 issue of A

    Exploring the Temporal Relation between Body Mass Index and Corticosteroid Metabolite Excretion in Childhood

    Get PDF
    Childhood obesity is associated with alterations in hypothalamus–pituitary–adrenal (HPA) axis activity. However, it is unknown whether these alterations are a cause or a consequence of obesity. This study aimed to explore the temporal relationship between cortisol production and metabolism, and body mass index (BMI). This prospective follow-up study included 218 children (of whom 50% were male), born between 1995 and 1996, who were assessed at the ages of 9, 12 and 17 years. Morning urine samples were collected for assessment of cortisol metabolites by gas chromatography-tandem mass spectrometry, enabling the calculation of cortisol metabolite excretion rate and cortisol metabolic pathways. A cross-lagged regression model was used to determine whether BMI at various ages during childhood predicted later cortisol production and metabolism parameters, or vice versa. The cross-lagged regression coefficients showed that BMI positively predicted cortisol metabolite excretion (p = 0.03), and not vice versa (p = 0.33). In addition, BMI predicted the later balance of 11β-hydroxysteroid dehydrogenase (HSD) activities (p = 0.07), and not vice versa (p = 0.55). Finally, cytochrome P450 3A4 activity positively predicted later BMI (p = 0.01). Our study suggests that changes in BMI across the normal range predict alterations in HPA axis activity. Therefore, the alterations in HPA axis activity as observed in earlier studies among children with obesity may be a consequence rather than a cause of increased BMI

    Mutation Rates and Selection on Synonymous Mutations in SARS-CoV-2

    Get PDF
    The COVID-19 pandemic has seen an unprecedented response from the sequencing community. Leveraging the sequence data from more than 140,000 SARS-CoV-2 genomes, we study mutation rates and selective pressures affecting the virus. Understanding the processes and effects of mutation and selection has profound implications for the study of viral evolution, for vaccine design, and for the tracking of viral spread. We highlight and address some common genome sequence analysis pitfalls that can lead to inaccurate inference of mutation rates and selection, such as ignoring skews in the genetic code, not accounting for recurrent mutations, and assuming evolutionary equilibrium. We find that two particular mutation rates, G →U and C →U, are similarly elevated and considerably higher than all other mutation rates, causing the majority of mutations in the SARS-CoV-2 genome, and are possibly the result of APOBEC and ROS activity. These mutations also tend to occur many times at the same genome positions along the global SARS-CoV-2 phylogeny (i.e., they are very homoplasic). We observe an effect of genomic context on mutation rates, but the effect of the context is overall limited. Although previous studies have suggested selection acting to decrease U content at synonymous sites, we bring forward evidence suggesting the opposite.N.G., C.W., and N.D.M. were supported by the European Molecular Biology Laboratory (EMBL). R.C.-D. was supported by R35GM128932 and by an Alfred P. Sloan foundation fellowship. R.L. was funded by Australian Research Council grant DP200103151, and by a Chan-Zuckerberg Initiative grant. We are very grateful to GISAID and all the groups who shared their sequencing data

    Sexual dimorphism in cortisol metabolism throughout pubertal development: a longitudinal study

    Get PDF
    Objective: Sex differences in disease susceptibility might be explained by sexual dimorphism in hypothalamic-pituitary-adrenal axis activity, which has been postulated to emerge during puberty. However, studies conducted thus far lacked an assessment of Tanner pubertal stage. This study aimed to assess the contribution of pubertal development to sexual dimorphism in cortisol production and metabolism. Methods: Participants (n = 218) were enrolled from a population-based Netherlands Twin Register. At the ages of 9, 12 and 17 years, Tanner pubertal stage was assessed and early morning urine samples were collected. Cortisol metabolites were measured with GC-MS/MS and ratios were calculated, representing cortisol metabolism enzyme activities, such as A-ring reductases, 11β-HSDs and CYP3A4. Cortisol production and metabolism parameters were compared between sexes for pre-pubertal (Tanner stage 1), early pubertal (Tanner stage 2–3) and late-pubertal (Tanner stage 4–5) stages. Results: Cortisol metabolite excretion rate decreased with pubertal maturation in both sexes, but did not significantly differ between sexes at any pubertal stage, although in girls a considerable decrease was observed between early and late-pubertal stage (P < 0.001). A-ring reductase activity was similar between sexes at pre-and early pubertal stages and was lower in girls than in boys at late-pubertal stage. Activities of 11β-HSDs were similar between sexes at pre-pubertal stage and favored cortisone in girls at early and late-pubertal stages. Cytochrome P450 3A4 activity did not differ between sexes. Conclusions: Prepubertally, sexes were similar in cortisol parameters. During puberty, as compared to boys, in girls the activities of A-ring reductases declined and the balance between 11β-HSDs progressively favored cortisone. In addition, girls showed a considerable decrease in cortisol metabolite excretion rate between early and late-pubertal stages. Our findings suggest that the sexual dimorphism in cortisol may either be explained by rising concentrations of sex steroids or by puberty-induced changes in body composition

    Reflections on Seminole Rock: The Past, Present, and Future of Deference to Agency Regulatory Interpretations

    Get PDF
    Seminole Rock (or Auer) deference has captured the attention of scholars, policymakers, and the judiciary. That is why Notice & Comment, the blog of the Yale Journal on Regulation and the American Bar Association’s Section of Administrative Law & Regulatory Practice, hosted an online symposium from September 12 to September 23, 2016 on the subject. This symposium contains over 20 contributions addressing different aspects of Seminole Rock deference. Topics include: History of Seminole Rock Empirical Examinations of Seminole Rock Understanding Seminole Rock Within Agencies Understanding Seminole Rock as Applied to Tax, Environmental Law, and Criminal Sentencing Why Seminole Rock Matters Should the Supreme Court Overrule Seminole Rock? Would Overruling Seminole Rock Have Unintended Consequences? What Might the Supreme Court Do? What Might Congress Do? The Future of Seminole Roc

    Stability of SARS-CoV-2 phylogenies.

    Get PDF
    Funder: Alfred P. Sloan Foundation; funder-id: http://dx.doi.org/10.13039/100000879Funder: European Molecular Biology Laboratory (EMBL)The SARS-CoV-2 pandemic has led to unprecedented, nearly real-time genetic tracing due to the rapid community sequencing response. Researchers immediately leveraged these data to infer the evolutionary relationships among viral samples and to study key biological questions, including whether host viral genome editing and recombination are features of SARS-CoV-2 evolution. This global sequencing effort is inherently decentralized and must rely on data collected by many labs using a wide variety of molecular and bioinformatic techniques. There is thus a strong possibility that systematic errors associated with lab-or protocol-specific practices affect some sequences in the repositories. We find that some recurrent mutations in reported SARS-CoV-2 genome sequences have been observed predominantly or exclusively by single labs, co-localize with commonly used primer binding sites and are more likely to affect the protein-coding sequences than other similarly recurrent mutations. We show that their inclusion can affect phylogenetic inference on scales relevant to local lineage tracing, and make it appear as though there has been an excess of recurrent mutation or recombination among viral lineages. We suggest how samples can be screened and problematic variants removed, and we plan to regularly inform the scientific community with our updated results as more SARS-CoV-2 genome sequences are shared (https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473 and https://virological.org/t/masking-strategies-for-sars-cov-2-alignments/480). We also develop tools for comparing and visualizing differences among very large phylogenies and we show that consistent clade- and tree-based comparisons can be made between phylogenies produced by different groups. These will facilitate evolutionary inferences and comparisons among phylogenies produced for a wide array of purposes. Building on the SARS-CoV-2 Genome Browser at UCSC, we present a toolkit to compare, analyze and combine SARS-CoV-2 phylogenies, find and remove potential sequencing errors and establish a widely shared, stable clade structure for a more accurate scientific inference and discourse

    Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids

    Get PDF
    To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 10(4) s(-1). By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe
    • …
    corecore