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Abstract

Objective: Sex differences in disease susceptibility might be explained by sexual 
dimorphism in hypothalamic-pituitary-adrenal axis activity, which has been postulated 
to emerge during puberty. However, studies conducted thus far lacked an assessment 
of Tanner pubertal stage. This study aimed to assess the contribution of pubertal 
development to sexual dimorphism in cortisol production and metabolism.
Methods: Participants (n = 218) were enrolled from a population-based Netherlands Twin 
Register. At the ages of 9, 12 and 17 years, Tanner pubertal stage was assessed and early 
morning urine samples were collected. Cortisol metabolites were measured with  
GC-MS/MS and ratios were calculated, representing cortisol metabolism enzyme 
activities, such as A-ring reductases, 11β-HSDs and CYP3A4. Cortisol production and 
metabolism parameters were compared between sexes for pre-pubertal (Tanner stage 
1), early pubertal (Tanner stage 2–3) and late-pubertal (Tanner stage 4–5) stages.
Results: Cortisol metabolite excretion rate decreased with pubertal maturation in both 
sexes, but did not significantly differ between sexes at any pubertal stage, although in 
girls a considerable decrease was observed between early and late-pubertal stage  
(P < 0.001). A-ring reductase activity was similar between sexes at pre- and early pubertal 
stages and was lower in girls than in boys at late-pubertal stage. Activities of 11β-HSDs 
were similar between sexes at pre-pubertal stage and favored cortisone in girls at early 
and late-pubertal stages. Cytochrome P450 3A4 activity did not differ between sexes.
Conclusions: Prepubertally, sexes were similar in cortisol parameters. During puberty, 
as compared to boys, in girls the activities of A-ring reductases declined and the 
balance between 11β-HSDs progressively favored cortisone. In addition, girls showed 
a considerable decrease in cortisol metabolite excretion rate between early and late-
pubertal stages. Our findings suggest that the sexual dimorphism in cortisol may either be 
explained by rising concentrations of sex steroids or by puberty-induced changes in  
body composition.
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Introduction

Males and females differ in their susceptibility to develop 
specific diseases. While females are more likely to develop 
auto-immune diseases and neuropsychiatric disorders like 
anxiety and depression, males are more susceptible to 
infectious diseases and are more likely to engage in violent 
competition (1, 2, 3). Moreover, males and females differ 
in cardiovascular disease susceptibility (4). Sex differences 
in HPA-axis settings have been hypothesized to play a role 
in these differences (5, 6, 7, 8, 9, 10).

Sexual dimorphism in HPA-axis activity has been 
suggested to be already present in early childhood. A 
recent meta-analysis suggested that boys and girls differed 
in basal HPA-axis activity, as assessed by salivary cortisol 
levels. Compared to girls, boys, up to age 8, had higher 
salivary cortisol levels and lower levels beyond this age 
(11). The timing of this change suggests that sex steroids 
influence the HPA axis. Surprisingly, to the best of our 
knowledge, there are no studies that have reported on 
HPA-axis activity across pubertal development.

HPA-axis activity is determined by the net effect 
of cortisol production and metabolism. Cortisol is  
metabolized by various enzymes (Fig. 1). The A-ring 
reductases (5α- and 5β-reductase), together with 
cytochrome P (CYP) 3A4, eliminate cortisol from the 
circulation primarily in the liver (12). The 11beta-
hydroxysteroid dehydrogenase (11β-HSD) isozymes 
regulate the interconversion between cortisol and its 
inactive metabolite cortisone. 11β-HSD type 1 is mainly 
expressed in the liver and adipose tissue, where it 
regenerates cortisol, and 11β-HSD type 2 catalyzes the 
reverse reaction in renal epithelial cells.

In adulthood, females were found to have a lower 
urinary excretion rate of cortisol metabolites than males 
(13, 14, 15). This is likely to be attributed to less A-ring 
reduction in females, resulting in a prolonged half-
life of cortisol and, hence, enhanced central feedback 
suppression (14). In contrast, CYP3A4 activity is higher 
in women than in men. However, CYP3A4 is known to 
eliminate only a small proportion of circulating cortisol 
(16, 17). There is controversy as to whether men and 
women differ in the activities of 11β-HSDs (14, 18, 19, 20).

Interaction between gonadal steroids and the 
metabolism of cortisol has been suggested by several studies 
(21, 22, 23, 24). However, there is only one cross-sectional 
study that has investigated glucocorticoid metabolism 
in children of various ages (18). This study demonstrated 
that the sex differences in the elimination rate of cortisol, 
as observed in adulthood, began around the age of  

11–12 years and were attributable to a progressive 
difference in 5α-reductase activity (being lower in older 
girls). Therefore, sexual dimorphism in cortisol metabolism 
was postulated to emerge during pubertal maturation, 
suggesting an interplay of adrenal and gonadal axes (18). 
However, information on pubertal stage was not available in 
that study (18). To the best of our knowledge, a longitudinal 
follow-up study of cortisol metabolism from pre- to post-
puberty has never been conducted. The aim of this study 
was to assess the contribution of pubertal development to 
sexual dimorphism in cortisol production and metabolism.

Materials and methods

Participants

We conducted a prospective follow-up study and 
recruited healthy mono- and dizygotic twin pairs from 
the Netherlands Twin Register (NTR), a population-based 
registry (25, 26). Twins born between 1995 and 1996 were 
invited to participate in the BrainScale study of cognition, 
hormones, and brain development (27, 28). BrainScale is a 

Figure 1
Schematic overview of cortisol metabolism. THF, tetrahydrocortisol; THE, 
tetrahydrocortisone; aTHF, allotetrahydrocortisol; 6β-OH-cortisol, 
6β-hydroxy-cortisol; HSD, hydroxysteroid dehydrogenase; CYP, 
cytochrome P.
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collaborative project between the NTR of the VU University 
Amsterdam and the University Medical Center Utrecht. 
Four to 8 weeks before the ninth birthday of the twins, a 
letter of invitation was sent to their parents. Following the 
invitation letter, the families were contacted by phone to 
inquire whether they were willing to participate. At the age 
of 9 years, 109 of the invited twin pairs (51%) participated 
in this study. Eighty-two percent of them participated at 
the age of 12 years, and 80% participated at the age of 
17 years. Seventy-one percent participated at all three 
occasions. Parents signed informed consent forms for their 
participating children and for themselves. In addition, 
twins signed their own informed consent forms at the 
third occasion (i.e. at the age of 17 years). The current 
study was approved by the medical ethics committee of 
the Amsterdam UMC, location VUmc.

Participants were physically examined by a researcher 
for pubertal stage at ages 9 and 12 years. The examination 
was based on secondary sexual characteristics according 
to Marshall and Tanner, that is, breast stage in girls and 
genital stage in boys (29, 30). Prior to the study, researchers 
were trained in the assessment of pubertal stage. If 
children felt uncomfortable with physical examination, 
pubertal stage was determined by self-report based on 
reference images. Of the participants, 100% and 80% were 
physically examined for pubertal stage at the ages of 9 and 
12 years, respectively. At the age of 17 years, pubertal stage 
was always determined by self-report. In addition, at the 
age of 17 years, information on the timing of menarche 
was ascertained. Previous data showed that the inter-rater 
agreement of self-reported data is relatively low, ranging 
between 49 and 86% in girls and between 27 and 78% in 
boys, in comparison to researcher-reported data (31, 32, 
33, 34, 35, 36, 37). Therefore, we classified participants 
as pre-pubertal (Tanner stage 1, hereafter referred to as 
stage A), early pubertal (Tanner stages 2 and 3, hereafter 
referred to as stage B), or late-pubertal (Tanner stages 4 
and 5, hereafter referred to as stage C). Girls documenting 
menarche were classified as late-pubertal, regardless of 

Tanner stage. For self-reported data, our classification 
system is expected to have an inter-rater agreement 
of 82% in girls and of 75% in boys, based on Danish 
reference data (31). These numbers are comparable with 
the inter-rater reliability of individual Tanner stages 
between trained assessors (38).

Study protocol

Participants were examined at the ages of 9, 12, and 17 
years. In the week prior to their study visit, subjects collected 
first voided morning urine samples in tubes provided by 
us. Participants were requested to store the samples in 
their refrigerator and to hand them in at the study visit. 
Samples were stored at −20°C and then at −80°C. Samples 
were thawed only once just before analysis.

Laboratory analysis

The analysis of cortisol metabolites was conducted at the 
Edinburgh Clinical Research Facility Mass Spectrometry 
Core Laboratory. Glucocorticoid metabolites were 
measured by gas chromatography-tandem mass 
spectrometry (GC-MS/MS) (39). Samples were analyzed 
in 15 batches. Creatinine concentrations were measured 
by the Jaffé method (40). The sum of cortisol metabolites 
divided by creatinine concentration was used as an index 
of cortisol production (cortisol metabolite excretion rate). 
Enzymatic activities were inferred from cortisol metabolite 
ratios, as depicted in Table 1. Higher ratios indicate higher 
enzymatic activity, except for 11β-HSD type 2 activity 
(cortisol/cortisone ratio).

Statistical analysis

In line with previous analyses in this sample, extreme 
outliers (>3 s.d. above the phenotypic mean or twin pairs 
with highly discordant outcomes; on average six and one 
per index, respectively) were excluded from the statistical 

Table 1 Summary of outcomes.

Parameter Index

(THF + allo-THF + THE + α-cortol + β-cortol + α-cortolone + β-cortolone)/creatinine Sum of cortisol metabolites  
(cortisol metabolite excretion rate)

allo-THF/F 5α-reductase activity
THF/F 5β-reductase activity (a)
THE/E 5β-reductase activity (b)
F/E 11β-HSD type 2 activity
(THF + allo-THF)/THE Balance of 11β-HSD activities
6β-OH cortisol/F Cytochrome P450 3A4 activity

E, cortisone; F, cortisol; HSD, hydroxysteroid dehydrogenase; THE, tetrahydrocortisone; THF, tetrahydrocortisol.
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analysis (41). Next, the data were corrected for batch 
effects by fitting a random effects model, in which batch 
was treated as a random effect (42).

Statistical modeling

Our main aim was to determine the effect of pubertal 
stage on the outcomes. To this end, we implemented 
a discrete-time Markov model, in which we estimated 
the mean and s.d. of each metabolite conditional on 
the pubertal stage. In this model, each participant was 
assigned to stage A, B, or C. We took into account that 
a given participant may transition from stage A to B 
or C and from stage B to stage C between ages 9 and 
12 and between 12 and 17 years, respectively. The 
parameters of the Markov model are the probabilities of 
being in stage A, B, or C at the age of 9 years, transition 
probabilities from ages 9 to 12 years, and transition 
probabilities from ages 12 to 17 years. Because no 9-year 
olds were assigned to stage C and no 17-year olds were 
assigned to stage A, the Markov model includes stages 
A and B at the age of 9 years, stages A, B, and C at the 
age of 12 years, and stages B and C at the age of 17 
years. Figure 2 depicts the model. In Fig. 2, p1 is the 
probability of being in stage A at the age of 9 years, 
q11 and q12 are conditional probabilities governing the 
transition between ages 9 and 12 years, and r11 and r21 
are conditional probabilities governing the transition 
between ages 12 and 17 years. For instance, q12 is the 
probability of transitioning from stage A at the age of  
9 years to stage B at the age of 12 years.

As we expected sex differences in probability of the 
pubertal stages at the age of 9 years and in the transition 
probabilities from ages 9 to 12 years and from 12 to  
17 years, we allowed these parameter to vary with sex (i.e. 
the probabilities p1, q11, q12, q22, r11, and r21 varied with 
sex). In addition, we allowed for sex differences in the 
means of the metabolites within a given pubertal stage 
(i.e. the means mA, mB, and mC varied with sex). s.d. were 
constrained to be equal over sexes.

The Markov transition model was implemented in 
Mplus 6.0 (43). The parameters were estimated by means 
of maximum likelihood (ML) estimation. For this study, 
twins were treated as individuals. Therefore, the s.e., CIs, 
and test statistics were corrected for family clustering. For all 
outcomes, means were calculated for girls and boys along 
with their 95% CIs. Differences between sexes were tested 
and reported by a two-tailed P value, whereby a P value 
of < 0.05 was considered as statically significant. Given 
the sample size, correction for multiple testing was not 
conducted. In addition, changes in cortisol parameters were 
calculated during pubertal development for both sexes.

Results

A total of 218 participants (50% females) were included in 
this study, including 94 monozygotic and 124 dizygotic 
twins. The monozygotic twin pairs included 23 male 
and 24 female pairs. The dizygotic twin pairs included  
22 male-, 21 female-, and 19 opposite-sex pairs. 
Participants were tested at 9.1 (±0.1), 12.2 (±0.3), and  

Figure 2
Statistical model: means depending on pubertal 
stage and sex. *A = pre-pubertal (Tanner stage 1); 
B = early pubertal (Tanner stage 2–3); C = late-
pubertal (Tanner stage 4–5)). p1 is the probability 
of being in stage A at the age of 9 years, q11 and 
q12 are conditional probabilities governing the 
transition between ages 9 and 12 years, and r11 
and r21 are conditional probabilities governing the 
transition between ages 12 and 17 years.
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17.2 (±0.2) years of age. In total 542 samples were analyzed, 
of which 213 (50% females), 167 (50% females), and 162 
(63% females) were obtained at the ages of 9, 12 and  
17 years, respectively. Mean s.d. score (Z score) (±s.d.) BMI 
(weight(kg)/height(m)2) was 0.14 (± 0.93), 0.45 (± 1.00),  
and 0.27 (± 1.08) at the ages of 9, 12 and 17 years, 
respectively (44). Table 2 displays the characteristics for 
boys and girls separately at the ages of 9, 12, and 17 years.

Pubertal development

The Markov model parameter estimates are shown in 
Table 3. At the age of 9 years, as expected, boys were more 
likely to be pre-pubertal than girls (0.944 vs 0.811). At 
the age of 12 years, the entire spectrum of pubertal stages 
were observed in both sexes, although in girls puberty 
was generally more advanced. At the age of 17 years, all 
girls were classified as late-pubertal, while, contrary to 
expectation, still 20% of the boys were early pubertal.

Consequently, sex differences in the transition 
probabilities from 9 to 12 years and from 12 to 17 years were 
also observed. For instance, the probability of remaining in 
stage A between the ages of 9 and 12 years was markedly 
higher in boys (0.259) than in girls (0.127). The probability 
of moving from stage A to C between 9 and 12 years was 
higher in girls than in boys (0.282 vs 0.025).

Sexual dimorphism in cortisol production and 
metabolism during pubertal development

Table 4 displays the sex-specific means for cortisol 
metabolite excretion rate and cortisol metabolite ratios 

by pubertal stage. Cortisol metabolite excretion rate did 
not statistically differ between sexes at any stage. The 
cortisol metabolite ratios were similar between sexes 
at stage A, but diverged during pubertal development. 
In boys at stages B and C, as compared to girls of 
the same stage, the balance of 11β-HSD activities  
((THF + allo-THF)/THE ratio) favored cortisol. At stage B, 
this difference could be partially attributable to a lower 
11β-HSD type 2 activity (cortisol/cortisone ratio) in 
boys. Girls at stage C, as compared to boys of the same 
stage, had lower activities of 5α- (allo-THF/F ratio) and 
5β-reductases (THE/E ratio). There were no differences in 
CYP3A4 activity (6-OH cortisol/cortisol ratio) between  
sexes at stages B or C.

Table 2 Characteristics of participants.

 Boys Girls
9 years (n = 106) 12 years (n = 83) 17 years (n = 77) 9 years (n = 106) 12 years (n = 86) 17 years (n = 95)

Length
 cm 139.2 ± 5.5 151.8 ± 7.2 179.6 ± 6.2 138.2 ± 4.8 152.5 ± 7.2 168.6 ± 6.1
 SDS 0.03 ± 0.89 −0.57 ± 0.93 −0.23 ± 0.83 0.06 ± 0.76 −0.60 ± 1.05 −0.10 ± 0.93
Weight 
 kg 31.6 ± 4.3 42.5 ± 8.4 67.3 ± 9.4 31.3 ± 4.6) 43.8 ± 8.4 61.3 ± 8.88
 SDS 0.34 ± 0.95 0.38 ± 0.91 0.12 ± 1.03 0.29 ± 0.91 0.05 ± 2.91 0.37 ± 1.09
Body mass index
 kg/m2 16.2 ± 1.4 18.6 ± 2.0 20.9 ± 2.5 16.4 ± 2.0 18.8 ± 2.9 21.6 ± 3.3
 SDS 0.21 ± 0.83 0.58 ± 0.86 0.21 ± 1.03 0.09 ± 1.00 0.32 ± 1.11 0.30 ± 1.13
Tanner stage (%)a 
 A 94 24 0 81 10 0
 B 6 70 20 19 62 0
 C 0 5 80 0 28 100

Values represent mean ± s.d. or %.
aPercentage of patients in Tanner stages are based on the transition probabilities according our Markov model. A = pre-pubertal (Tanner stage 1); 
B = early pubertal (Tanner stage 2–3); C = late-pubertal (Tanner stage 4–5).

Table 3 Pubertal development and transition probabilities 
according our Markov model.

 
Age (years)

Pubertal 
developmenta

Markov 
parameters

 
Girls 

 
Boys 

9 A p1 0.811 0.944
B 1-p1 0.189 0.056

9->12 A->A q11 0.127 0.259
A->B q12 0.592 0.717
A->C 1-q11-q12 0.282 0.025
B->B q22 0.733 0.500
B->C 1-q22 0.267 0.500

12->17 A->B r11 0.000 0.491
A->C 1-r11 1.000 0.509
B->B r21 0.000 0.110
B->C 1-r21 1.000 0.890
C->C 1 1.000 1.000

aA = pre-pubertal (Tanner stage 1), B = early pubertal (Tanner stage 2–3), 
C = late-pubertal (Tanner stage 4–5).
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Table 5 presents the changes in cortisol metabolite 
excretion rate and cortisol metabolite ratios during 
pubertal development by sex. In both sexes cortisol 
metabolite excretion rate decreased with pubertal 
progression, albeit with few differences. In boys, cortisol 
metabolite excretion rate decreased between stages A 
and B, while in girls it decreased considerably between 
stages B and C. In both sexes between stages B and C 
the balance of 11β-HSD activities ((THF + allo-THF)/THE)  
changed in the direction of cortisol, which could 
partially be explained by decreased 11β-HSD type 2 
activity (cortisol/cortisone ratio). In girls, the activities 
of A-ring reductases (ratios of allo-THF/F, THF/F, and 
THE/E) increased (with the exception of 5α-reductase 
activity) between stages A and B and decreased between 
stages B and C. In boys, these parameters did not change 
during pubertal development. In both sexes, CYP3A4 
activity (6-OH cortisol/cortisol ratio) was stable across 
pubertal development.

Discussion

In this longitudinal study, we have demonstrated that 
the excretion of cortisol metabolites diverges between 
sexes with advancing pubertal maturation. Therefore, 
our study suggests that the sexual dimorphism in cortisol 
metabolism that generally starts around the age of 11  

is a hormonally driven process, either directly, by 
influencing gene expression, or indirectly, by impacting 
on body composition.

Previous studies showed that adult men and women 
differ in the excretion rate of cortisol metabolites, which 
was higher in males (13, 45). Wudy et al. found that these 
differences emerged from the age of 11 to 12 years (18), 
suggestive of an important role of gonadal hormones. 
However, their study lacked an assessment of pubertal 
status. In our study, which included repeated assessment 
of Tanner pubertal stage, we found that the excretion 
rate of cortisol metabolites decreased significantly in 
girls between early and late-pubertal stage, suggestive of 
an effect of pubertal development on the excretion rate 
of cortisol metabolites in girls. In contrast to previous 
research (18), we were not able to detect statistically 
significant differences in cortisol metabolite excretion rate 
between sexes which might be due to the use of morning 
instead of 24-h urine or the relatively small sample size.

Our data provided evidence for a sexual dimorphism 
in cortisol metabolism, as assessed by ratios reflecting the 
activities of the enzymes involved. We found that with 
advancing pubertal maturation in females, as compared 
to males, the balance of 11β-HSDs progressively favored 
cortisone and that the proportion of A-ring reduced 
metabolites was lower, in line with data in adults (13, 
14, 15, 20, 45). During pubertal maturation, levels of sex 
steroids increase gradually along with the development 

Table 4 Cortisol metabolite excretion rate and cortisol metabolite ratios by pubertal stage.

Parameter
Pubertal 

stagea Mean girls (95% CI) Mean boys (95% CI) Variances
Sex difference Effect size

P value Cohen’s D

Cortisol metabolite 
excretion rate 

A
B

0.581 (0.533–0.629)
0.577 (0.522–0.631)

0.571 (0.511–0.631)
0.512 (0.446–0.579)

0.047
0.047

0.777
0.108

0.046
0.300

C 0.448 (0.407–0.489) 0.487 (0.411–0.563) 0.056 0.400 0.165
5α-reductase activity 

(allo-THF/F)
A
B

8.982 (8.087–9.876)
9.909 (8.832–10.987)

9.405 (8.158–10.653)
8.255 (6.784–9.726)

24.048
21.623

0.576
0.064

0.086
0.356

C 5.504 (4.724–6.284) 8.558 (7.135–9.981) 19.815 <0.001 0.686
5β-reductase activity  

(a) (THF/F)
A
B

9.164 (8.388–9.939)
11.116 (10.413–11.820)

10.195 (9.014–11.377)
11.367 (9.809–13.223)

20.976
29.161

0.151
0.791

0.225
0.046

C 9.792 (9.096–10.487) 10.729 (9.453–12.006) 15.494 0.227 0.238
5β-reductase activity  

(b) (THF/E)
A
B

27.101 (25.358–28.845)
31.517 (28.929–34.106)

27.409 (25.140–29.678)
29.465 (25.960–32.969)

70.990
132.215

0.823
0.335

0.037
0.178

C 26.096 (24.404–27.787) 30.468 (26.861–34.076) 123.162 0.046 0.394
11β-HSD type 2  

activity (F/E)
A
B

0.896 (0.846–0.946)
0.772 (0.688–0.855)

0.872 (0.799–0.945)
0.915 (0.809–1.022)

0.100
0.106

0.593
0.027

0.076
0.439

C 1.264 (1.168–1.359) 1.242 (1.102–1.382) 0.217 0.796 0.047
Balance of 11β-HSD 

activities  
((THF + allo-THF)/THE)

A
B
C

0.613 (0.572–0.655)
0.552 (0.497–0.607)
0.669 (0.631–0.708)

0.623 (0.572–0.675)
0.640 (0.570–0.711)
0.793 (0.716–0.871)

0.035
0.054
0.056

0.741
0.040
0.008

0.053
0.379
0.524

Cytochrome P450  
3A4 activity  
(6β-OH cortisol/F)

A
B
C

1.893 (1.748–2.038)
1.907 (1.712–2.101)
1.773 (1.606–1.940)

1.955 (1.734–2.176)
1.834 (1.560–2.109)
1.859 (1.598–2.120)

0.630
0.910
0.604

0.645
0.663
0.590

0.078
0.077
0.111

aA = pre-pubertal (Tanner stage 1); B = early pubertal (Tanner stage 2–3); C = late-pubertal (Tanner stage 4–5).
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of secondary sexual characteristics (46). Therefore, our 
findings suggest that sex steroids influence cortisol 
metabolism either directly, for example, by influencing 
gene expression, or indirectly, by impacting on body 
composition (47, 48, 49).

With advancing pubertal development, differences in 
body composition emerge between sexes; girls gain more 
mass and boys acquire more fat-free mass and skeletal 
mass (50). These differences are regulated by endocrine 
factors, including gonadal steroids and growth hormone 
(51), in addition to genetic and environmental factors. 
Body composition is strongly associated with HPA-axis 
activity, both in adulthood and childhood (52, 53), 
and the observed differences between sexes in cortisol 
parameters that emerge during pubertal development 
could (partially) be explained by progressive differences in 
body composition. Although males and females did not 
differ in BMI at any age, unfortunately our study lacked a 
more detailed assessment of body composition.

It is unclear whether the sex differences in cortisol 
metabolism that we observed are androgen- or estrogen 
mediated. A study in adult men showed that testosterone 
reduced the CRH-stimulated rise in serum cortisol, in spite of 
increased ACTH, suggestive of adrenal hyporesponsiveness 
(54). Evidence for an effect of androgens on glucocorticoid 
metabolism was provided by other studies (55, 56, 
57). It has been demonstrated by multiple studies that 
women with polycystic ovary syndrome – a condition 
characterized by increased androgen production – had a 
higher 5α-reductase activity than BMI-matched controls 
(55). However, this may be part of the PCOS trait rather 
than an effect of hyperandrogenism, as their daughters 
already had a greater 5α-reductase activity, in spite of a 
similar androgen metabolite excretion rate, from early 

childhood than age-matched controls (56). In contrast, 
experiments in gonadectomized male rats suggested that 
androgens suppress the expression and/or the activity 
of hepatic A-ring reductases (57). In addition, the same 
experiments suggested that androgens increase 11β-HSD 
type 1 in liver and adipose tissue (57).

Studies in rats and humans suggest that estrogens 
could also influence glucocorticoid metabolism, though 
findings were contradictory. Several studies in rodents 
have shown that the expression and/or the activity of 
A-ring reductases and 11β-HSD type 1 was upregulated 
and downregulated by estrogen, respectively (19, 22, 58, 
59, 60, 61). In contrast, in humans the activity of these 
enzymes was independent of the phase of the menstrual 
cycle or, after menopause, use of estrogen replacement 
therapy (14, 15, 20).

Our study has several strengths and limitations. 
The major strength of our study was the long follow-up 
period of 8 years, enabling us to assess the contribution 
of pubertal maturation to sexual dimorphism in HPA-
axis functioning. Moreover, participants were recruited 
from a population-based twin register and the numbers 
remaining into follow-up were relatively high for an age 
group that is notoriously difficult to engage in longitudinal 
studies. Another strength is that all measurements were 
performed in the same laboratory at the same time. 
Samples were frozen as soon as possible and were thawed 
only once prior to analysis, which enhances stability (62).

Our study also has its limitations. First, the Brain Scale 
study was not powered specifically for the present study 
and, hence, a sample size calculation was not performed 
prior to analysis, which might explain our inability to 
detect differences in cortisol metabolite excretion rate 
between sexes. Second, some limitations related to our 

Table 5 Changes in cortisol metabolite excretion rate and cortisol metabolite ratios during pubertal development.

Parameter Pubertal stagea Girls Mean difference (95% CI) P value Boys Mean difference (95% CI) P value

Cortisol metabolite 
excretion rate 

A -> B
B -> C

−0.004 (−0.069–0.060)
−0.128 (−0.188–0.068)

0.913
<0.001

−0.059 (−0.160–−0.012)
−0.024 (−0.097–0.048)

0.040
0.580

5α-reductase activity A -> B 0.928 (−0.234–2.090) 0.189 −1.150 (−2.367–−1.150) 0.120
B -> C −4.406 (−5.703–−3.109) <0.001 0.303 (−0.945–−0.303) 0.690

5β-reductase activity (a) A -> B 1.953 (1.097–2.808) <0.001 1.172 (−0.209–2.553) 0.163
B -> C −1.325 (−2.366–−0.284) 0.036 −0.638 (−2.113–0.837) 0.477

5β-reductase activity (b) A -> B 4.416 (1.501–7.331) 0.013 2.056 (−0.359–4.471) 0.161
B -> C −5.422 (−8.335–−2.508) 0.002 1.003 (−2.180–4.186) 0.604

11β-HSD type 2 activity A -> B −0.124 (−0.213–−0.036) 0.021 0.043 (−0.025–0.111) 0.302
B -> C 0.492 (0.363–0.620) <0.001 0.326 (0.220–0.433) <0.001

Balance of 11β-HSD 
activities 

A -> B
B -> C

−0.061 (−0.119–−0.004)
0.117 (0.046–0.188)

0.079
0.007

0.016 (−0.031–0.063)
0.153 (0.089–0.218)

0.566
<0.001

Cytochrome P450 3A4 
activity 

A -> B
B -> C

0.013 (−0.205–0.232)
−0.134 (−0.400–0.133)

0.919
0.410

−0.121 (−0.315–0.073)
0.025 (−0.251–0.301)

0.304
0.883

aA = pre-pubertal (Tanner stage 1); B = early pubertal (Tanner stage 2–3); C = late-pubertal (Tanner stage 4–5).
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outcome should be acknowledged. Enzymatic activities 
were estimated by ratios of metabolites in morning urine, 
which estimate activity only globally. Since cortisol is 
secreted in a circadian rhythm, a 24-h-urine sample 
would have been preferred. In addition, both short- and 
long-term stability of cortisol production and metabolism 
are low, which could have influenced our results (63, 
64). Third, a residual age effect could not be excluded. 
In order to distinguish between a residual age effect and 
the effect of pubertal maturation, a larger sample size 
is warranted. Fourth, Tanner pubertal stages were, for 
an important part, assessed by self-report, which might 
result in misclassification, notably under classification 
(31). Nevertheless, our approach (i.e. classifying according 
to pre-, early, and late-pubertal stages and the use of the 
Markov model) is likely to reduce misclassification.

Conclusion

With advancing pubertal maturation, sexual dimorphism 
in cortisol metabolism became increasingly manifest, 
while no differences were seen prepubertally. These 
differences could emerge from direct or indirect effects of 
sex steroids on cortisol metabolism.
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