15 research outputs found

    The three-dimensional structure of the biotin carboxylase-biotin carboxyl carrier protein complex of E. coli acetyl-CoA carboxylase

    Get PDF
    Acetyl-coenzyme A (acetyl-CoA) carboxylase is a biotin-dependent, multifunctional enzyme that catalyzes the regulated step in fatty acid synthesis. The Escherichia coli enzyme is composed of a homodimeric biotin carboxylase (BC), biotinylated biotin carboxyl carrier protein (BCCP), and an α2β2 heterotetrameric carboxyltransferase. This enzyme complex catalyzes two half-reactions to form malonyl-coenzyme A. BC and BCCP participate in the first half-reaction, whereas carboxyltransferase and BCCP are involved in the second. Three-dimensional structures have been reported for the individual subunits; however, the structural basis for how BCCP reacts with the carboxylase or transferase is unknown. Therefore, we report here the crystal structure of E. coli BCCP complexed with BC to a resolution of 2.49 Å. The protein-protein complex shows a unique quaternary structure and two distinct interfaces for each BCCP monomer. These BCCP binding sites are unique compared to phylogenetically related biotin-dependent carboxylases and therefore provide novel targets for developing antibiotics against bacterial acetyl-CoA carboxylase. © 2013 Elsevier Ltd

    Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO_2 Fixation

    Get PDF
    Two major energy-related problems confront the world in the next 50 years. First, increased worldwide competition for gradually depleting fossil fuel reserves (derived from past photosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand

    Variation in carbon and nitrogen concentrations among peatland categories at the global scale

    Get PDF
    Publisher Copyright: © 2022 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.Peer reviewe

    The many types of carbonic anhydrases in photosynthetic organisms

    No full text
    Carbonic anhydrases (CAs) are enzymes that catalyze the interconversion of CO and HCO. In nature, there are multiple families of CA, designated with the Greek letters α through θ. CAs are ubiquitous in plants, algae and photosynthetic bacteria, often playing essential roles in the CO concentrating mechanisms (CCMs) which enhance the delivery of CO to Rubisco. As algal CCMs become better characterized, it is clear that different types of CAs are playing the same role in different algae. For example, an α-CA catalyzes the conversion of accumulated HCO to CO in the green alga Chlamydomonas reinhardtii, while a θ-CA performs the same function in the diatom Phaeodactylum tricornutum. In this review we argue that, in addition to its role of delivering CO for photosynthesis, other metabolic roles of CA have likely changed as the Earth\u27s atmospheric CO level decreased. Since the algal and plant lineages diverged well before the decrease in atmospheric CO, it is likely that plant, algae and photosynthetic bacteria all adapted independently to the drop in atmospheric CO. In light of this, we will discuss how the roles of CAs may have changed over time, focusing on the role of CA in pH regulation, how CAs affect CO supply for photosynthesis and how CAs may help in the delivery of HCO for other metabolic reactions

    Carbon Fixation Driven by Molecular Hydrogen Results in Chemolithoautotrophically Enhanced Growth of Helicobacter pylori

    No full text
    A molecular hydrogen (H(2))-stimulated, chemolithoautotrophic growth mode for the gastric pathogen Helicobacter pylori is reported. In a culture medium containing peptides and amino acids, H(2)-supplied cells consistently achieved 40 to 60% greater growth yield in 16 h and accumulated 3-fold more carbon from [(14)C]bicarbonate (on a per cell basis) in a 10-h period than cells without H(2). Global proteomic comparisons of cells supplied with different atmospheric conditions revealed that addition of H(2) led to increased amounts of hydrogenase and the biotin carboxylase subunit of acetyl coenzyme A (acetyl-CoA) carboxylase (ACC), as well as other proteins involved in various cellular functions, including amino acid metabolism, heme synthesis, or protein degradation. In agreement with this result, H(2)-supplied cells contained 3-fold more ACC activity than cells without H(2). Other possible carbon dioxide (CO(2)) fixation enzymes were not up-expressed under the H(2)-containing atmosphere. As the gastric mucus is limited in carbon and energy sources and the bacterium lacks mucinase, this new growth mode may contribute to the persistence of the pathogen in vivo. This is the first time that chemolithoautotrophic growth is described for a pathogen. IMPORTANCE Many pathogens must survive within host areas that are poorly supplied with carbon and energy sources, and the gastric pathogen Helicobacter pylori resides almost exclusively in the nutritionally stringent mucus barrier of its host. Although this bacterium is already known to be highly adaptable to gastric niches, a new aspect of its metabolic flexibility, whereby molecular hydrogen use (energy) is coupled to carbon dioxide fixation (carbon acquisition) via a described carbon fixation enzyme, is shown here. This growth mode, which supplements heterotrophy, is termed chemolithoautotrophy and has not been previously reported for a pathogen

    Carbon Fixation Driven by Molecular Hydrogen Results in Chemolithoautotrophically Enhanced Growth of Helicobacter pylori

    No full text
    UNLABELLED: A molecular hydrogen (H2)-stimulated, chemolithoautotrophic growth mode for the gastric pathogen Helicobacter pylori is reported. In a culture medium containing peptides and amino acids, H2-supplied cells consistently achieved 40 to 60% greater growth yield in 16 h and accumulated 3-fold more carbon from [(14)C]bicarbonate (on a per cell basis) in a 10-h period than cells without H2 Global proteomic comparisons of cells supplied with different atmospheric conditions revealed that addition of H2 led to increased amounts of hydrogenase and the biotin carboxylase subunit of acetyl coenzyme A (acetyl-CoA) carboxylase (ACC), as well as other proteins involved in various cellular functions, including amino acid metabolism, heme synthesis, or protein degradation. In agreement with this result, H2-supplied cells contained 3-fold more ACC activity than cells without H2 Other possible carbon dioxide (CO2) fixation enzymes were not up-expressed under the H2-containing atmosphere. As the gastric mucus is limited in carbon and energy sources and the bacterium lacks mucinase, this new growth mode may contribute to the persistence of the pathogen in vivo This is the first time that chemolithoautotrophic growth is described for a pathogen. IMPORTANCE: Many pathogens must survive within host areas that are poorly supplied with carbon and energy sources, and the gastric pathogen Helicobacter pylori resides almost exclusively in the nutritionally stringent mucus barrier of its host. Although this bacterium is already known to be highly adaptable to gastric niches, a new aspect of its metabolic flexibility, whereby molecular hydrogen use (energy) is coupled to carbon dioxide fixation (carbon acquisition) via a described carbon fixation enzyme, is shown here. This growth mode, which supplements heterotrophy, is termed chemolithoautotrophy and has not been previously reported for a pathogen

    Optimization and Mechanistic Characterization of Pyridopyrimidine Inhibitors of Bacterial Biotin Carboxylase

    No full text
    A major challenge for new antibiotic discovery is predicting the physicochemical properties that enable small molecules to permeate Gram-negative bacterial membranes. We have applied physicochemical lessons from previous work to redesign and improve the antibacterial potency of pyridopyrimidine inhibitors of biotin carboxylase (BC) by up to 64-fold and 16-fold against and , respectively. Antibacterial and enzyme potency assessments in the presence of an outer membrane-permeabilizing agent or in efflux-compromised strains indicate that penetration and efflux properties of many redesigned BC inhibitors could be improved to various extents. Spontaneous resistance to the improved pyridopyrimidine inhibitors in occurs at very low frequencies between 10 and 10. However, resistant isolates had alarmingly high minimum inhibitory concentration shifts (16- to \u3e128-fold) compared to the parent strain. Whole-genome sequencing of resistant isolates revealed that either BC target mutations or efflux pump overexpression can lead to the development of high-level resistance
    corecore