3,289 research outputs found

    Agame-theoretical approach to network capacity planning under competition

    Get PDF
    The paper discusses the dimensioning strategies of two network providers (operators) that supply channels to the same population of users in a competitive environment. Usersare assumed to compete for best service (lowest blocking probability of new request), while operators wishto maximize their profits. This setting gives rise to two interconnected, noncooperative games: a) a users game, in which the partition of primary traffic between operators is determined by the operators' channel capacities and by the users' blocking-avoidance strategy; and b) a network dimensioning game between operators in which the players alternate dimensioning decisions thatmaximize their profit rate under the current channel capacity of his/her opponent. At least for two plausible users' blocking avoidance strategies discussed in the paper, the users game will always reach some algorithmic equilibrium. In the operators' game, the player strategies are given by their numbers of deployed chanels, limited by their available infrastructure resources. If the infrastrucutre is under-dimensioned with respect to the traffic rate, the operators game willreach a Nash equilibrium when both players reach full use of their available infrastructures. Otherweise, a Nash equilibrium may also arise if both operators incur the same deployment costs. If costs are asymmetric, though, the alternating game may enter a loop. If the asymmetry is modest, both players may then try to achieve a competitive monopoly in which the opponent is forced to leave the game or operate with a loss (negative profit). However, if the asymmetry is high enough, only the player with the lower costs can force his opponent to leave the game while still holding a profitable operation. --network dimensioning,game theory,duopoly,Nash equilibrium,circuit switching,blocking probability

    Instrument to collect fogwater for chemical analysis

    Get PDF
    An instrument is presented which collects large samples of ambient fogwater by impaction of droplets on a screen. The collection efficiency of the instrument is determined as a function of droplet size, and it is shown that fog droplets in the range 3–100-µm diameter are efficiently collected. No significant evaporation or condensation occurs at any stage of the collection process. Field testing indicates that samples collected are representative of the ambient fogwater. The instrument may easily be automated, and is suitable for use in routine air quality monitoring programs

    Genomic aberrations in normal tissue adjacent to HER2-amplified breast cancers: field cancerization or contaminating tumor cells?

    Get PDF
    Field cancerization effects as well as isolated tumor cell foci extending well beyond the invasive tumor margin have been described previously to account for local recurrence rates following breast conserving surgery despite adequate surgical margins and breast radiotherapy. To look for evidence of possible tumor cell contamination or field cancerization by genetic effects, a pilot study (Study 1: 12 sample pairs) followed by a verification study (Study 2: 20 sample pairs) were performed on DNA extracted from HER2-positive breast tumors and matching normal adjacent mammary tissue samples excised 1-3 cm beyond the invasive tumor margin. High-resolution molecular inversion probe (MIP) arrays were used to compare genomic copy number variations, including increased HER2 gene copies, between the paired samples; as well, a detailed histologic and immunohistochemical (IHC) re-evaluation of all Study 2 samples was performed blinded to the genomic results to characterize the adjacent normal tissue composition bracketing the DNA-extracted samples. Overall, 14/32 (44 %) sample pairs from both studies produced genome-wide evidence of genetic aberrations including HER2 copy number gains within the adjacent normal tissue samples. The observed single-parental origin of monoallelic HER2 amplicon haplotypes shared by informative tumor-normal pairs, as well as commonly gained loci elsewhere on 17q, suggested the presence of contaminating tumor cells in the genomically aberrant normal samples. Histologic and IHC analyses identified occult 25-200 μm tumor cell clusters overexpressing HER2 scattered in more than half, but not all, of the genomically aberrant normal samples re-evaluated, but in none of the genomically normal samples. These genomic and microscopic findings support the conclusion that tumor cell contamination rather than genetic field cancerization represents the likeliest cause of local clinical recurrence rates following breast conserving surgery, and mandate caution in assuming the genomic normalcy of histologically benign appearing peritumor breast tissue

    New separation protocol reveals spray painting as a neglected source of microplastics in soils

    Get PDF
    Microplastics are recently discovered contaminants, yet knowledge on their sources and analysis is limited. For instance, paint microplastics are poorly known because soil separation protocols using flotation solutions cannot separate paint microplastics due to the higher density of paint microplastic versus common microplastics. Here, we designed a new two-step density separation protocol for paint microplastics, allowing paint microplastics to be separated from the soil without digestion. Paint particles were separated from soil samples collected around the graffiti wall at the Mauerpark, Berlin, then quantified according to their shape and color characteristic. The presence of polymers as binders in the paint particles was verified by Fourier transform infrared spectroscopy. Results show concentrations from 1.1 × 105 to 2.9 × 105 microplastics per Kg of dry soil, representing the highest microplastic concentration ever reported in the literature. Particle concentrations decreased and the median size increased with soil depth. Our results provide first evidence that spray painting, a technique with a wide range of applications from industry to art, leaves a legacy of environmental microplastic in soils that has so far gone unnoticed

    Developing an agro-climatic zoning model to determine potential growing areas for Camelina sativa in Argentina

    Get PDF
    The purpose of this paper was the development of an agro-climatic zoning model to determine potential growing areas for Camelina sativa in Argentina. Camelina (Camelina sativa L.) is a promising and sustainable alternative energy crop that belongs to the Brassicaceae (mustard) family. Camelina sativa oil contains around 40% fatty acids, of which only a small percentage are saturated. Camelina sativa derived biokerosene used in aviation has shown 84% reduction in greenhouse gas emissions during its life cycle, compared to petroleum kerosene. It has the potential of becoming the renewable fuel of choice for air navigation in the future. Agro-climatology is a valuable tool in the identification of agro-climates with favorable conditions for the introduction of new crops. Agro-climatic zoning permits identifying areas with different potential yields, as per their environmental conditions. It was necessary to evaluate the requirements, limits and bio-meteorological tolerance and conditions for these species, taking into account the climatological characteristics of native areas and regions for their successful cultivation around the world. In order to define this crop's agroclimatic aptitude in Argentina, climatic data was analyzed from meteorological stations, corresponding to the period 1981-2010. Finally, Camelina's potential growing areas were obtained with 5 differentiated suitability classes. Based on international bibliography, the authors outlined an agro-climatic zoning model to determine potential growing areas in Argentina for Camelina sativa. This model may be applied to any part of the world, using the agroclimatic limits presented in this paper. This is an innovative work, made by the implementation of a Geographic Information System that can be updated by the further incorporation of complementary information, with the consequent improvement of the original database.Fil: Falasca, Silvia Liliana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miranda del Fresno, Ma. Carolina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Waldman, C.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentin

    How Soil Invertebrates Deal With Microplastic Contamination

    Get PDF
    Small animals living in soils, called soil invertebrates, represent a very diverse group of soil inhabitants. They include earthworms, woodlice, spiders, springtails, mites, and some insects. Soil invertebrates feed on dead plants, on fungi and bacteria, or on other soil invertebrates. The many ways soil invertebrates interact with each other, and the large number of different species, make life in soils complex and difficult to understand. Unfortunately, soil invertebrates have been dealing with soil pollution, including contamination with tiny particles of plastic called microplastics for decades now. But are microplastics harmful to these organisms? Can microplastics be passed between soil invertebrates when one feeds on another? Most questions about microplastics and soil invertebrates have been investigated using earthworms, but a few studies on others, like springtails, mites, and nematodes, also exist. In this article, we summarize the effects of microplastics on soil invertebrates

    Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients.

    Get PDF
    Background: The colorectal cancer antigen GUCY2C exhibits unique split tolerance, evoking antigen-specific CD8+, but not CD4+, T-cell responses that deliver anti-tumor immunity without autoimmunity in mice. Here, the cancer vaccine Ad5-GUCY2C-PADRE was evaluated in a first-in-man phase I clinical study of patients with early-stage colorectal cancer to assess its safety and immunological efficacy. Methods: Ten patients with surgically-resected stage I or stage II (pN0) colon cancer received a single intramuscular injection of 1011 viral particles (vp) of Ad5-GUCY2C-PADRE. Safety assessment and immunomonitoring were carried out for 6 months following immunization. This trial employed continual monitoring of both efficacy and toxicity of subjects as joint primary outcomes. Results: All patients receiving Ad5-GUCY2C-PADRE completed the study and none developed adverse events greater than grade 1. Antibody responses to GUCY2C were detected in 10% of patients, while 40% exhibited GUCY2C-specific T-cell responses. GUCY2C-specific responses were exclusively CD8+ cytotoxic T cells, mimicking pre-clinical studies in mice in which GUCY2C-specific CD4+ T cells are eliminated by self-tolerance, while CD8+ T cells escape tolerance and mediate antitumor immunity. Moreover, pre-existing neutralizing antibodies (NAbs) to the Ad5 vector were associated with poor vaccine-induced responses, suggesting that Ad5 NAbs oppose GUCY2C immune responses to the vaccine in patients and supported by mouse studies. Conclusions: Split tolerance to GUCY2C in cancer patients can be exploited to safely generate antigen-specific cytotoxic CD8+, but not autoimmune CD4+, T cells by Ad5-GUCY2C-PADRE in the absence of pre-existing NAbs to the viral vector. TRIAL REGISTRATION: This trial (NCT01972737) was registered at ClinicalTrials.gov on October 30th, 2013. https://clinicaltrials.gov/ct2/show/NCT01972737

    Estimating the impact of tuberculosis anatomical classification on treatment outcomes: A patient and surveillance perspective analysis.

    Get PDF
    INTRODUCTION: Tuberculosis anatomical classification is inconsistent in the literature, which limits current tuberculosis knowledge and control. We aimed to evaluate whether tuberculosis classification impacts on treatment outcomes at patient and aggregate level. METHODS: We analyzed adults from São Paulo State, Brazil with newly diagnosed tuberculosis from 2010-2013. We used an extended clinical classification of tuberculosis, categorizing cases as pulmonary, pulmonary and extrapulmonary, extrapulmonary and miliary/disseminated. Our primary outcome was unsuccessful outcome of treatment. To investigate the reported treatment outcome at the aggregate level, we sampled 500 different "countries" from the dataset and compared the impact of pulmonary and extrapulmonary classifications on the reported treatment success. RESULTS: Of 62,178 patients, 49,999 (80.4%) were pulmonary, 9,026 (14.5%) extrapulmonary, 1,651 (2.7%) pulmonary-extrapulmonary and 1,502 (2.4%) miliary/disseminated. Pulmonary-extrapulmonary cases had similar unsuccessful outcome of treatment compared with pulmonary (adjusted-OR 1.00, 95%CI, 0.88-1.13, p = 0.941), while extrapulmonary were associated with better (adjusted-OR 0.65, 95%CI, 0.60-0.71, p<0.001) and miliary/disseminated with worse outcomes (adjusted-OR 1.51, 95%CI, 1.33-1.71, p<0.001). We found that 60 (12%) countries would report a difference ≥10% in treatment success depending on whether they reported all clinical forms together (current WHO recommendation) or pulmonary forms alone, overestimating the treatment success of pulmonary forms. CONCLUSIONS: The expanded anatomical classification of tuberculosis was strongly associated with treatment outcomes at the patient level. Remarkably, pulmonary with concomitant extrapulmonary forms had similar treatment outcomes compared with pulmonary forms after adjustment for potential confounders. At the aggregate level, reporting treatment success for all clinical forms together might hide differences in progress between pulmonary and extrapulmonary tuberculosis control
    corecore