94 research outputs found

    Incongruousness

    Get PDF
    A collection of short stories by Barbara Waldern

    Kinetics and kinematics of the tölt: effects of rider interaction and shoeing manipulations

    Get PDF
    Introduction . Compared to most equine horse breeds which are able to walk, trot and canter /gallop, the gait repertoire of the Icelandic horses additionally includes the lateral gait tölt and frequently also the pace. With respect to the tölt gait, special shoeing, saddling and riding techniques have been developed for Icelandic horses in order to enhance its expressiveness and regularity. Toes are left unnaturally long and heavy shoes and paddings, as well as weighted boots are used to enforce the individual gait predisposition. For the same reason, the rider is placed more caudally to the horse's centre of mass as compared to other riding techniques. The biomechanical impact of these methods on the health of the locomotor system has so far never been subject of systematic research. Objectives . The aims of the presented study are (1) to describe the kinetic and kinematic characteristics of the tölt performed on a treadmill, (2) to understand the mechanical consequences of shoeing manipulation (long hooves, weighted boots) on the loading and protraction movement of the limbs, as well as (3) to study the pressure distribution and effects on the gait pattern of 3 different saddle types used for riding Icelandic horses. Materials and methods . Gait analysis was carried out in 13 Icelandic horses at walk and at slow and medium tölting and trotting speeds on a high-speed treadmill instrumented for measuring vertical ground reaction forces as well as temporal and spatial gait variables. Kinematic data of horse, rider and saddle were measured simultaneously. Gait analysis was first carried out with high, long hooves (SH) without and in combination with weighted boots (ad aim (2)). Afterwards, horses were re-shod according to current horseshoeing standards (SN) and gait analysis was repeated (ad aims (1) and (2)). In a second trial, horses were additionally equipped with a pressure sensitive saddle mat and were ridden with a dressage-like saddle (SDres), an Icelandic saddle (Slcel) and a saddle cushion (SCush) in the standard saddle position (ad aim 3). Results and conclusions . Compared to trot at the same speed, tölting horses had a higher stride rate and lower stride impulses. At the tölt loading of the forelimbs was increased in form of higher peak vertical forces (Fzpeak) due to shorter relative stance durations (StDrel). Conversely, in the hindlimbs, longer StDrel resulted in lower Fzpeak. Despite the higher head-neck position at tölt, there was no measurable shift in weight to the hindlimbs. Footfall rhythm was in most horses laterally coupled at the tölt and frequently had a slight fourbeat and a very short suspension phase at trot; underlining the fact that performance of correct gaits in Icelandic horses needs special training. Gait performance as it is currently judged in competition could be improved using a shoeing with SH, resulting in a 21 ± 5 mm longer dorsal hoof wall, but also a weight gain of 273 ± 50 g at the distal limb due to heavier shoeing material. Compared to SN, SH led to a lower stride rate, a longer stride length and a higher, but not wider, forelimb protraction arc, which were also positively associated with speed. At the tölt, the footfall rhythm showed less tendency to lateral couplets and at the trot, the suspension phase was longer. However, on the long term, SH may have negative implications for the health of the palmar structures of the distal foot by increased limb impulses, higher torques at breakover (up to 20%); as well as peak vertical forces at faster speeds. Compared to the shoeing style, the saddle type had less influence on limb forces or movements. The slight weight shift to the rear with SCush and Slcel may be explained by the more caudal position of the rider relative to the horse's back. With SCush, pressure was highest under the cranial part of the saddle, whereas the saddles with trees had more pressure under the caudal area

    Eosinophils Play a Surprising Leading Role in Recurrent Urticaria in Horses

    Get PDF
    Urticaria, independent of or associated with allergies, is commonly seen in horses and often shows a high reoccurrence rate. Managing these horses is discouraging, and efficient treatment options are lacking. Due to an incidental finding in a study on horses affected by insect bite hypersensitivity using the eosinophil-targeting eIL-5-CuMV-TT vaccine, we observed the prevention of reoccurring seasonal urticaria in four subsequent years with re-vaccination. In an exploratory case series of horses affected with non-seasonal urticaria, we aimed to investigate the role of eosinophils in urticaria. Skin punch biopsies for histology and qPCR of eosinophil associated genes were performed. Further, two severe, non-seasonal, recurrent urticaria-affected horses were vaccinated using eIL-5-CuMV-TT, and urticaria flare-up was followed up with re-vaccination for several years. Eotaxin-2, eotaxin-3, IL-5, CCR5, and CXCL10 showed high sensitivity and specificity for urticarial lesions, while eosinophils were present in 50% of histological tissue sections. The eIL-5-CuMV-TT vaccine reduced eosinophil counts in blood, cleared clinical signs of urticaria, and even prevented new episodes of urticaria in horses with non-seasonal recurrent urticaria. This indicates that eosinophils play a leading role in urticaria in horses, and targeting eosinophils offers an attractive new treatment option, replacing the use of corticosteroids

    Adaptation strategies of horses with induced forelimb lameness walking on a treadmill

    Get PDF
    Background There is a paucity of research describing the gait pattern of lame horses at the walk. Objectives To describe the changes in motion pattern and vertical ground reaction forces (GRFz) in horses with induced forelimb lameness at the walk and compare those changes with the changes observed at the trot. Study design Experimental study. Methods In 10 clinically sound Warmblood horses, moderate forelimb lameness was induced using a sole pressure model followed by trot and walk on a treadmill. Kinematic data were collected using 3D optical motion capture (OMC), and GRFz by an instrumented treadmill. Mixed models were used to compare sound baseline versus forelimb lameness (significance was set atP < .05). Results Lameness induction significantly reduced peak GRFz on the second force peak, and vertical impulse in the lame limb. Stride and stance duration in all limbs were reduced. Lameness significantly affected the vertical movement symmetry of the head and withers. Maximum limb retraction angle, fetlock extension and protraction speed were reduced in the lame limb. Body centre of mass (COM) translation was reduced in the side-to-side direction and increased in the vertical and fore-aft directions. Several compensatory kinetic and kinematic changes were observed in the nonlame limbs. The observed changes in both kinetics and kinematics were generally smaller at walk with fewer variables being affected, compared to the trot. Main limitations Only one degree and type of orthopaedic pain (sole pressure) was studied. Conclusions Compensatory strategies of forelimb lameness at the walk include alteration of several kinetic and kinematic parameters and have some specific patterns and inter-individual differences that are not seen at the trot. However, much like at the trot, head movement and forelimb vertical force symmetry seem to be the most useful parameters to detect forelimb lameness at walk

    Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing

    Get PDF
    Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on pre-mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with pre-mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a β-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and 6 newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants

    Science in brief: Highlights from the biomechanics and physiotherapy abstracts at the International Conference on Equine Exercise Physiology.

    Get PDF
    Although human observations of equine locomotion are as old as our relationship with the horse, today's scientists still have much to learn about horse–human interactions. Two approaches are commonly used to study equine biomechanics and both were evident in abstracts presented at the International Conference on Equine Exercise Physiology (ICEEP) 2014. One approach is to use simplified methods of measurement and analysis that provide simple but meaningful objective information that can ultimately be used by the clinician or practitioner. Alternatively, more complex equipment and techniques may be used that directly measure or infer loading on the equine musculoskeletal system to provide detailed structural and functional information. Whichever methods are used, it is important that they are reliable and robust and that the errors and limitations of the measurement system are fully recognised when interpreting data. In his keynote speech, Professor René van Weeren proposed that the biomechanical techniques available to scientists today provide a gateway to a better understanding of the horse–rider interaction that must ultimately improve equine welfare while maintaining peak performance. The abstracts presented in this Editorial therefore cover key topics that are relevant to welfare and performance, lameness and asymmetry, locomotion and sports performance, a focus on the axial system, and the foot
    corecore