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Although human observations of equine locomotion are as old as our relationship with the 5 

horse, today’s scientists still have much to learn about horse-human interactions. Two 6 

approaches are commonly used to study equine biomechanics and both were evident in 7 

abstracts presented at the International Conference on Equine Exercise Physiology (ICEEP) 8 

2014. One approach is to use simplified methods of measurement and analysis that provide 9 

simple but meaningful objective information that can ultimately be used by the clinician or 10 

practitioner. Alternatively, more complex equipment and techniques may be used to provide 11 

detailed structural and functional information that directly measure or infer loading on the 12 

equine musculoskeletal system. Whichever methods are used it is important that they are 13 

reliable and robust, and that the errors and limitations of the measurement system are fully 14 

recognized when interpreting data. In his keynote speech, Professor Rene Van Weeren 15 

proposed that the biomechanical techniques available to scientists today provide a gateway 16 

towards a better understanding of the horse-rider interaction that must ultimately improve 17 

equine welfare whilst maintaining peak performance. The abstracts presented in this review 18 

therefore cover key topics that are relevant to welfare and performance; lameness and 19 

asymmetry, locomotion and sports performance, a focus on the axial system, and the foot. 20 

 21 

Lameness and asymmetry 22 

The subtleties of pathological low grade lameness compared to asymmetries that result from 23 

other causes including mechanical asymmetries, laterality, asymmetric posture, muscular 24 

imbalances, the task involved, such as circling, and the horse-human interaction was a key 25 

topic of interest. The studies presented enhanced current knowledge of kinetic, kinematic and 26 

postural asymmetries, which at times rejected long held anecdotal assumptions and 27 

undoubtedly will lead to improvements in clinical examination and diagnosis over time.  28 

 29 



Two studies investigated the effect of side-handling, as leading from the left is often 30 

implicated in relation to asymmetric movement and loading patterns.  Head and pelvis 31 

movement symmetry was not found to be influenced by the side from which a horse was led, 32 

provided the horses had a consistent head carriage and minimum of 27 strides were used in 33 

the analysis [1]. Using a pressure plate with a smaller number of repeats over two data 34 

collection sessions no significant differences were found peak vertical force or vertical 35 

impulse with the handler on the left compared to the right [2]. Both studies therefore 36 

confirmed that side-handling can be discounted as a cause of asymmetry during lameness 37 

assessments. 38 

 39 

Other aspects of current clinical practice were investigated in relation to subjective and 40 

objective quantification of lameness. An objective evaluation of pelvic symmetry before and 41 

after diagnostic analgesia in the hindlimb of lame horses was performed to determine which 42 

parameters changed most consistently between horses [3]. Movement amplitude between left 43 

and right tuber coxae changed consistently. Although this was not as sensitive as the 44 

difference in upward movement between left and right tuber coxae, it was considered easier 45 

to perceive in a lameness examination, so was considered the objective measurement of 46 

choice to compliment subjective assessment. The anecdotal link between tail deviation and 47 

lameness was also explored [4].  87.2% of the horses, which included both sound and lame 48 

horses, showed some degree of tail deviation. Due to the high proportion of horses with a tail 49 

deviation and the variability in postural angle between horses, no significant relationship 50 

between tail carriage and lameness was identified. Tail deviation should therefore not be 51 

considered an indicator for lameness.  52 

 53 



Examination of the lame horse often extends beyond straight line motion on a flat surface and 54 

can include inclines, declines or circles to further investigate the origin of lameness. In 55 

relation to slopes, declines were found to increase longitudinal breaking force and maximal 56 

vertical force in the forelimb, whereas inclines increased propulsive force [5]. The demands 57 

on the superficial digital flexor tendon may therefore be greater on declines whereas the 58 

demands on the deep digital flexor tendon may be greater on inclines.  59 

 60 

Circular motion poses additional challenges in relation to lameness diagnosis, as circle 61 

dependent movement patterns are evident and these can vary between horses. In one study [6] 62 

inter- and intra-rater agreement of lame limb identification between equine practitioners was 63 

evaluated from videos of sound and lame horses during lungeing. High inter-observer 64 

variation was found, although agreement increased by11% greater in when evaluating 65 

forelimb compared to hindlimb lameness. To address this very problem, another study [7] 66 

compared objective classification of lameness on the circle to the exact fore-/hindlimb(s) 67 

scored lame subjectively, final diagnosis and objective classification on a straight line. The 68 

study reported a high frequency of false positives in objective classification on a circle 69 

compared to subjective evaluation, and objective measurements of asymmetry during circular 70 

motion were not associated with baseline lameness. Subtle lameness may be detectable more 71 

successfully using this technique once predictive values of circle dependent asymmetry are 72 

determined, ensuring that circle size [8] and speed are taken into account.   73 

 74 

Circle dependent asymmetries occur due to the change in locomotion requirements, which 75 

include the production of centripetal force at the ground to make the turn. Centripetal force 76 

can be produced by leaning inwards, which shifts the point of application of the ground 77 

reaction force towards the centre of the circle [9]. This medio-lateral loading is borne by the 78 



forelimbs in a proportion that is directly related to their greater support of the body mass 79 

against gravity compared to the hindlimbs, but with no significant difference between inside 80 

and outside limbs [10]. 81 

 82 

Speed and circle size influence the requirement for centripetal force production, but the point 83 

of application of the ground reaction force was only found to move towards the centre of the 84 

circle above walking speed [9]. At trot, the point of application of the ground reaction force 85 

was reported to move by 19.8 ± 10 mm, producing a 3-times higher centripetal force, but 86 

interestingly the amount of systematic movement asymmetry on the same sized circle was 87 

comparable between walk and trot [11]. In another study [12] no significant differences in 88 

predicted compared to measured body lean angles were found between trot and canter on two 89 

different sized circle. In this study, horses leaned marginally less into the circle than predicted 90 

and significant differences in body lean angle between horses and turn directions were found. 91 

These studies provide evidence to suggest that centripetal force may not be the primary 92 

variable responsible for movement asymmetry on the circle [11].  93 

 94 

The effect of exercise on movement symmetry was explored in two different studies. The 95 

first used a longitudinal approach, measuring the vertical head (forelimb) and pelvis 96 

(hindlimb) movement of trotters that were in training fourteen times from yearlings to 3-year 97 

olds. The horses were grouped according to when they qualified to race and it was found that 98 

forelimb movement asymmetry was associated with delayed race qualification [13]. The 99 

second study compared movement symmetry before and after endurance rides of 120–160 100 

kilometres and found a significant decrease in post-ride symmetry of the trunk [14]. Long 101 

term and/or endurance exercise may therefore result in asymmetric musculoskeletal 102 

development, which may have a direct influence on performance. Understanding the extrinsic 103 



and intrinsic factors that leads to asymmetric development during exercise will offer health, 104 

welfare and performance benefits. 105 

 106 

Equine locomotion and sports performance 107 

Biomechanical studies of sports horses and race horses sit on one of the two sides of a 108 

balancing scale. One side of the scale concerns the health and welfare of the horse, whilst the 109 

other side considers performance. The scales must balance if we are to maintain health and 110 

welfare without compromising performance. In balancing the scales we must therefore 111 

understand the performance demands placed upon the horse and this section describes studies 112 

that were presented on aspects of performance. 113 

  114 

The most explosive capabilities of galloping horses were highlighted in a study comparing 115 

Quarter Horse sprint races to Thoroughbred classic distance stakes races [15]. The average 116 

stride rates for Quarter Horses were 25% greater than for Thoroughbreds (2.88 vs 2.34 117 

strides/sec). When just considering the Thoroughbreds, these stride rates and associated 118 

respiratory rates are quite remarkable. The higher values in Quarter Horses reported here may 119 

have implications for skeletal and respiratory soundness, although further work is needed to 120 

explore the capabilities of these horses. The effects of speed were investigated in more detail 121 

in trotters [16]. As speed increased, vertical loading rate increased in both fore and hind 122 

limbs. The relationship between speed and peak vertical force was greater in the hindlimbs, 123 

although again both increased with speed and as stance duration decreased so did vertical 124 

impulse. A greater increase in hindlimb peak force with an increase in speed has not 125 

previously been reported and highlights the necessity of performing biomechanical 126 

measurements under real training conditions. Changes in limb loading with speed will also 127 

influence the combined centre of pressure (COP) location and therefore the pitching moments 128 



about the centre of mass (COM) [17]. In particular, it was reported that divergence of the 129 

COM from the COP creating a vertical force moment arm prior to midstance may aid in 130 

accelerating the COM about the hind foot, thereby passively assisting hindlimb propulsion. 131 

The control of stability, balance and locomotion efficiency for different breeds in different 132 

gaits and at different speeds will develop a better understanding of the limits of capability in 133 

the horse. 134 

 135 

Jumping was the topic of interest of a number of studies that considered the demands placed 136 

upon the horse and jumping technique. Forces measured during jumping confirmed the 137 

difference in roles of the leading and trailing forelimbs during landing where the leading 138 

forelimb plays a major part in the retardatory (load-absorption) phase, while trailing forelimb 139 

is mainly involved in propulsion [18]. Increased lumbosacral and thoracocolumbar flexion 140 

during take-off and flight were reported to be associated with altered limb kinematics on 141 

landing, which may influence limb loading [19]. Neck, thoracic and lumbar motion 142 

influenced subjective grading of the jumping technique, and although higher ratings were 143 

only weakly related to longer take off distances [20], the probability of success in free 144 

jumping increased with increasing take off distance [21]. Increased velocity was found to 145 

reduce free jumping success and increasing the number of jumping efforts decreased take-off 146 

and landing distances, and height of the forelimb, withers and croup over the fence [22]. 147 

Much work is still needed in this area to fully appreciate the demands on the horse, dependant 148 

on capability, discipline, fence type, environmental factors and competition level. 149 

 150 

One of the key environmental factors is the surface used in training and competition, and 151 

studies relating to surfaces were presented by a number of authors. This included the 152 

developments of the surface used for the Olympic Games in 2012 and how important water 153 



management and sub-surface construction are to achieving functional properties that support 154 

elite performance [23]. Rider perception of these properties could be considered as important 155 

as the measurement of them, and when questioned in a survey, riders preferred a surface that 156 

produced higher peak loads and greater traction values [24]. Although these functional 157 

properties are likely to support a good performance they are also more likely to increase 158 

musculoskeletal injury risk. 159 

 160 

Several studies focussed on differences between surface types, which provide additional 161 

information in relation to the horse-hoof-surface interaction. In a longitudinal study of two-162 

year-old Thoroughbred racehorses in training, turf and peat moss training surfaces caused an 163 

increase in stride length [25]. Using a pressure mat, vertical force and pressure measurements 164 

synonymous with damping decreased on a surface covered with 50 mm of sand/synthetic 165 

material, while contact area increased when compared to being covered with a rubber mat. 166 

[26]. A new design of instrumented horse shoe was used to explore surface reaction profiles 167 

during gallop on a sand track compared to a grass track [27]. Surface penetration on sand was 168 

found to be greater, and there was a difference in stiffness but not in damping between these 169 

surfaces.  170 

 171 

Also concerning different racing surfaces, forelimb hoof accelerations of galloping 172 

Thoroughbreds on a dirt surface compared to a synthetic surface with greater shear strength 173 

were recorded [28]. Peak dorsopalmar accelerations were 40% greater during landing on the 174 

synthetic surface compared to a dirt surface and the grab phase was 32% shorter. In another 175 

study [29] maximum loading rate on the synthetic surface was reported to be five times 176 

greater than the dirt surface, which suggests a notable increase strain on the suspensory 177 

apparatus. The findings of these two studies contrast previous findings of trotting horses on 178 



all-weather waxed and crushed sand surfaces, suggesting that variability within surface 179 

category may be large and should be considered in future studies.  180 

 181 

Rider interaction with the horse mainly focussed on asymmetry in the rider and the potential 182 

effects on performance. Trunk axial rotation, which has previously been reported in riders, 183 

was linked to poor shoulder-in dressage scores and was thought to be due to the right hand 184 

dominance of the riders tested [30]. Pelvic posture and motion control were the feature of two 185 

studies [31,32]. Control of forward flexion and extension motion of the pelvis during 186 

standing was measured in riders and this was compared to horse-rider synchronisation during 187 

riding [31]. It was suggested that the ability to control pelvic motion may influence horse-188 

rider harmony. In another study, standing and sitting pelvic asymmetry was found to be 189 

prevalent in riders and this was linked to pelvic asymmetry in the horse [32], although the 190 

cause and effect relationship is undoubtedly complex and has yet to be substantially 191 

evidenced.  192 

 193 

The neck, back and pelvis 194 

Good health of the axial system in the horse is essential for sustaining good performance. 195 

Maintaining health in the neck, back and pelvis is however complex, as pathologies in these 196 

structures may develop due to primary or secondary causes and neuromuscular activity may 197 

be permanently compromised. Our understanding of the structures, pathologies, functional 198 

deficits, neuromuscular response and influence of rehabilitation techniques are developing 199 

[33-35], but we have much still to learn. Studies presented provided new information on the 200 

axial system, but as in-vivo measurement still poses a number of issues the reliability of 201 

several measurement techniques were also explored. 202 

 203 



Intrinsic factors that increase the risk of injury and may be performance limiting include 204 

morphological differences between horses. In a study exploring the link between sacroiliac 205 

joint degeneration and back pain in Thoroughbred racehorses, a relationship between bone 206 

formation and surface area of the joint was found, and back pain was associated with obvious 207 

gross pathologies [36]. Interestingly, there was no relationship between bodyweight or age 208 

and the surface area of the sacroiliac joint. In another study [37] muscle fibre type 209 

distribution in m. psoas major and m. longissimus dorsi was found to vary with breed 210 

(Quarter Horses versus Arabians). It was suggested that due to muscle fibre type distribution 211 

the deep epaxial muscles mm. psoas minor and the diaphragm are most likely to have a 212 

postural stabilization role compared to the hindlimb muscles, where type II and IIX were 213 

more prevalent. New information on lamella band measurements of the nuchal ligament of 214 

foetal foals in different head and neck positions was also presented [38]. This study found 215 

lamella band width differences in different postures and suggested that extreme head and 216 

neck positions may interfere with normal elastic energy storage in the nuchal ligament during 217 

movement.  218 

 219 

Manipulation of the head and neck was used in-vivo to investigate skin displacement in the 220 

equine neck using radiopaque skin markers from C1 to C6 [39]. Significant differences of up 221 

to 44 ± 14 mm between control and “nose to carpus” positions were found between actual 222 

vertebral position and skin mounted marker positions. In another study assessing soft tissue 223 

artefacts, motion of the ilium and sacrum during manual force application to the equine pelvis 224 

were compared using bone fixated and skin mounted sensors [40]. A poor correlation was 225 

reported suggesting that kinematics during external movement applied to the pelvis cannot be 226 

predicted from skin-mounted sensors.  Soft tissue artefacts, which include skin sliding and 227 

muscle deformation should always be taken into consideration when using skin mounted 228 



markers or sensors, as the movement of the soft tissues over the underlying bones can be 229 

quite pronounced. 230 

 231 

The capabilities of diagnostic imaging techniques were explored by several authors. The 232 

locations of clinically important structures including the facet joints, spinal cord, cervical 233 

nerve roots and intervertebral disks were identified using magnetic resonance imaging (MRI) 234 

and compared to contrast-enhanced computerised tomography (CT) imaging in one study 235 

[41]. The CT images were able to depict all osseous borders, but MR images were found to 236 

be superior for soft tissue structures. There may therefore be limitations in using contrast-237 

enhanced CT imaging when accurate diagnosis of cervical disease is required. The ability to 238 

measure interspinous spaces using radiographs was presented by investigating X-ray beam 239 

angle when imaging the equine back [42]. This study found differences of up to 2 mm in 240 

spacing depending on the beam angle and suggested that this may result in incorrect 241 

evaluation of interspinous spaces. Inter and intra-operator reliability and repeatability using 242 

ultrasonography compared to MR imaging was investigated in the equine neck, as atrophy 243 

and response to physiotherapy could be measured and monitored more cost-effectively using 244 

ultrasound. It was suggested that ultrasonography could be used for cross sectional area 245 

(CSA) measurement of m. multifidus and m. longus colli in the mid-cervical spine of the 246 

horse, as the CSA of both muscles was larger in this region [43,44] .  247 

  248 

Rehabilitation studies included a novel assessment of electromyographic (EMG) intensity and 249 

duration of vastus lateralis and gastrocnemius lateralis when applying an increasing draft load 250 

at walk [45]. Intensity and duration of activity was found to increase with increasing load 251 

suggesting that a draft load could be utilised for strength training following injury or to 252 

improve athletic performance. Water treadmill exercise is already used for rehabilitation 253 



purposes, but one study investigated the effects of water depth on pelvic movement. A 254 

significant increase in vertical displacement of the pelvis was found as water depth increased 255 

without an increase in displacement symmetry [46]. New and improved methods of 256 

rehabilitation together with intrinsic and extrinsic factors that increase injury risk should 257 

continue to be the focus of scientific study, particularly as changes in the musculoskeletal 258 

system can occur so rapidly [47, 48].  259 

 260 

The foot 261 

The internal and external morphology of the foot are as important today as they have ever 262 

been and yet we still know relatively little about factors that influence growth, conformation 263 

and function from the foal to the adult horse. This topic was addressed by a number of 264 

authors who highlighted differences between foals and adult horses and functional 265 

differences between horses, gaits and shoeing practices. 266 

 267 

In relation to growth, hoof renewal in Thoroughbred foals was found to occur at twice the 268 

speed given for mature horses [49]. In addition, external characteristics including the hoof 269 

pastern axis and hoof angle, which are commonly used to assess dorsopalmar conformation in 270 

adult horses cannot be used in foals [50]. It was found that the hoof wall integument and 271 

distal phalanx were not parallel in foals and the hoof pastern axis and phalangeal axis were 272 

not aligned. The cause of the non-alignment was reported to be widening of hoof integument 273 

proximodistally and circumferential bone thickening of the distal phalanx.  274 

 275 

In relation to function, one study used a high-speed fluoroscopy system to measure angles of 276 

the distal interphalangeal joint (DIPJ) and the deep digital flexor tendon (DDFT) around the 277 

navicular bone, and the moment arm of the DDFT [51]. Significant differences in the range 278 



of motion during stance of the DIPJ between gaits, strides and horses were found, which may 279 

result in altered stress distribution in the DDFT. In another study the functional consequences 280 

of uneven feet in riding horses was explored, where unevenness was best determined by the 281 

differences in dorsal hoof wall angle between forefeet [52]. In horses with uneven feet, larger 282 

braking force, vertical force, vertical fetlock displacement and overall, a suppler limb spring 283 

during loading were found in the flatter foot. The difference in peak vertical force may 284 

indicate early, subclinical signs of lameness in the steeper foot, and the differences in 285 

function suggest that altered stress patterns within the limb tissues are likely.  286 

 287 

With respect to shoeing, Icelandic horses in competition are commonly shod with weighted 288 

boots on excessively high and long hooves to enhance the expressiveness and regularity of 289 

the tölt. Two studies reported upon the functional consequences of this shoeing practice. 290 

Weight, particularly in combination with high and long hooves increased protraction height, 291 

but only marginally increased limb peak forces [53]. However, high hooves with long toes 292 

may have negative implications for the health of the palmar structures of the distal foot, as 293 

the DIPJ moment increased significantly [54] and enhanced inertial forces during the swing 294 

phase might stress internal distal limb structures [53].  295 

 296 

Foot morphology and function should continue to be a research priority, as shoeing and 297 

trimming practices can have such a large influence on soundness in the horse. 298 

 299 
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