76 research outputs found

    Plasmodium falciparum clearance with artemisinin-based combination therapy (ACT) in patients with glucose-6-phosphate dehydrogenase deficiency in Mali

    Get PDF
    URL : http://www.malariajournal.com/content/9/1/332Background: Artemisinin-based combination therapy (ACT) is currently the most effective medicine for the treatment of uncomplicated malaria. Artemisinin has previously been shown to increase the clearance of Plasmodium falciparum in malaria patients with haemoglobin E trait, but it did not increase parasite inhibition in an in vitro study using haemoglobin AS erythrocytes. The current study describes the efficacy of artemisinin derivatives on P. falciparum clearance in patients with glucose-6-phosphate dehydrogenase deficiency (G6PD), a haemoglobin enzyme deficiency, not yet studied in the same context, but nonetheless is a common in malaria endemic areas, associated with host protection against uncomplicated and severe malaria. The impact of G6PD deficiency on parasite clearance with ACT treatment was compared between G6PD-deficient patients and G6PD-normal group. Methods: Blood samples from children and adults participants (1 to 70 years old) with uncomplicated P. falciparum malaria residing in Kambila, Mali were analysed. Study participants were randomly assigned to receive either artemether-lumefantrine (Coartem®) or artesunate plus mefloquine (Artequin™). A restriction-fragment length polymorphism analysis of PCR-amplified DNA samples was used to identify the (A-) allele of the gene mutation responsible for G6PD deficiency (G6PD*A-). 470 blood samples were thus analysed and of these, DNA was extracted from 315 samples using the QIAamp kit for PCR to identify the G6PD*A- gene. Results

    An investigation on 3-acetyl-7-methoxy-coumarin Schiff bases and their Ru(II) metallates with potent antiproliferative activity and enhanced LDH and NO release†

    Get PDF
    New cyclometallated ruthenium(ii) complexes of 3-acetyl-7-methoxycoumarin-4N-substituted thiosemicarbazones were synthesized and characterized by analytical and spectral techniques. The crystal structures of the ligands H2L1-3 and complexes (1, 2 and 4) were confirmed by X-ray crystallography. The analysis showed that the ligands have undergone C-H activation at the C(4) carbon of the pyrone ring and acted in a tridentate fashion by binding through C, N and S atoms. CT-DNA and protein (BSA/HSA) binding studies were carried out to analyze their interaction with biomolecules. Good binding affinity with DNA was observed with intercalative binding mode, which was further confirmed by EB displacement and viscosity measurement studies. The quenching mechanism with BSA/HSA was found to be static. Three dimensional (3D) fluorescence measurements were carried out to validate the micro environmental changes in the serum albumins. Their antioxidant propensity and antimicrobial study insisted that the compounds displayed good spectrum of activity. Evaluation of their anticancer potential against MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines revealed that the complexes exhibited better activity than the ligands and cisplatin. Further, the results of LDH and NO release assays supported the cytotoxic nature of the compounds. The non-toxic nature of the compounds was established by testing against the non-cancerous cell line HaCaT (human normal keratinocyte). © 2018 The Royal Society of Chemistry

    A Conserved Behavioral State Barrier Impedes Transitions between Anesthetic-Induced Unconsciousness and Wakefulness: Evidence for Neural Inertia

    Get PDF
    One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states

    Pick and mix : how management graduates create their own career path, combining employment modes, HR configuration, career fields and organisational membership as they see fit

    No full text
    In this thesis, a potential link between organisational membership, employment mode, HR configuration and career field was examined. A model was created, which consisted of four distinct employee profiles, combining the four theories. The research was based largely on the works of Lepak & Snell (2002), Stamper et al. (2009), Shore & Barksdale (1998) and Mayrhofer et al. (2004). Following theoretical background on the psychological contract, employer and employee obligations, organisational membership, affective commitment, the evolution of the career, the different career fields, human capital, the employment relationship and HR configurations, the model was elaborated and tested quantitatively on 109 management graduates through a questionnaire. The results found that the model was invalid, as only one individual could be classified into a profile. The only link established between these theories was between HR configuration and employment mode, and HR configuration and affective commitment. This led to the conclusion that individuals can determine how they interact with their organisation, and develop an employment structure that fits their needs.Master [120] en Ingénieur de gestion, Université catholique de Louvain, 201

    Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and -sensitive parasites

    No full text
    Iron (Fe) is crucial for cellular proliferation, and Fe chelators have shown activity at preventing the growth of the malarial parasite in cell culture and in animal and human studies. We investigated the anti-malarial activity of novel aroylhydrazone and thiosemicarbazone Fe chelators that show high activity at inhibiting the growth of tumour cells in cell culture [Blood 100 (2002) 666]. Experiments with the chelators were performed using the chloroquine-sensitive, 3D7, and chloroquine-resistant, 7G8, strains of Plasmodium falciparum in vitro. The new ligands were significantly more active in both strains than the Fe chelator in widespread clinical use, desferrioxamine (DFO). The most effective chelators examined were 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone and 2-hydroxy-1- naphthylaldehyde-4-phenyl-3-thiosemicarbazone. The anti-malarial activity correlates with anti-proliferative activity against neoplastic cells demonstrated in a previous study. Our studies suggest that this class of lipophilic chelators may have potential as useful agents for the treatment of malaria. © 2003 Elsevier Ltd. All rights reserved
    corecore