193 research outputs found

    Geometric versus geographic models for the estimation of an FTTH deployment

    Get PDF
    Optical access networks provide a future proof platform for a wide range of services, and today, several operators are deploying fibre to the home (FTTH) networks. Installing an FTTH infrastructure, however, involves very high investment cost. Therefore, a good estimation of the investment cost is important for building a successful business strategy and, consequently, to speed up the FTTH penetration. In this paper, for calculating the amount of cable and fibre in the outside plant together with the associated civil works, and the number of required network elements, two different approaches are investigated: (1) geometric modelling of the fibre plant based on approximate mathematical models and (2) geographic modelling of the fibre plant based on map-based geospatial data. The results obtained from these two approaches can then be used as input for preliminary investment cost calculations and/or techno-economic evaluations. Compared to more complex and accurate geographic modelling, we verify that especially with uneven population density and irregular street system, simple geometric models do not provide accurate results. However, if no geospatial data is available or a fast calculation is desired for a first estimation, geometric models definitely have their relevance. Based on the case studies presented in this paper, we propose some important guidelines to improve the accuracy of the geometric models by eliminating their main distortion factors

    Geographic model for cost estimation of FTTH deployment: overcoming inaccuracy in uneven-populated areas

    Get PDF
    A geographic approach is proposed to accurately estimate the cost of FTTH networks. In contrast to the existing geometric models, our model can efficiently avoid inaccurate estimation of the fibre infrastructure cost in the uneven-populated areas

    Fragmentation of exotic oxygen isotopes

    Get PDF
    Abrasion-ablation models and the empirical EPAX parametrization of projectile fragmentation are described. Their cross section predictions are compared to recent data of the fragmentation of secondary beams of neutron-rich, unstable 19,20,21O isotopes at beam energies near 600 MeV/nucleon as well as data for stable 17,18O beams

    Coulomb fragmentation and Coulomb fission of relativistic heavy-ions and related nuclear structure aspects

    Get PDF
    The Coulomb excitation of 208Pb projectiles has been studied at an energy of 640 A MeV. Cross sections for the excitation of the two-phonon giant dipole resonance were measured for different targets, and show clear evidence for a two-step electromagnetic excitation mechanism. The experimental cross sections exceed those calculated in the harmonic oscillator approximation by a factor of 1.33 ± 0.16. The deduced 27-decay probability is consistent with the expectation in the harmonic limit. Finally, the excitation of the two-phonon giant dipole resonance in the deformed and fissile nucleus 238U is discussed
    corecore