180 research outputs found

    Designing for technology acceptance in an ageing society through multi-stakeholder collaboration

    Get PDF
    Among the European countries, the Dutch retirement system is often considered as one of the best. However, as the baby boomer generation enters the retirement age, this situation changes. The increasing ageing phenomenon has presented tremendous challenges on economic prospects and societal wellbeing. Soon, there will be more retirees than the workers. There won’t be enough money to provide care up to the current standards for all the pensioners. This means that seniors need to live independently in their own houses longer than they used to. This calls for new means of providing care – mainly over distance and with use of technology. This, however, becomes a problem for the non-tech savvy elderly. In this paper, we describes a case study that designs for technology acceptance in a multi-stakeholders collaboration setting to support elderly people to accept the use of an e-homecare system

    Multilayer Plasmonic Nanostructures for Improved Sensing Activities Using a FEM and Neurocomputing-Based Approach

    Get PDF
    In order to obtain optimized elementary devices (photovoltaic modules, power transistors for energy efficiency, high-efficiency sensors) it is necessary to increase the energy conversion efficiency of these devices. A very effective approach to achieving this goal is to increase the absorption of incident radiation. A promising strategy to increase this absorption is to use very thin regions of active material and trap photons near these surfaces. The most effective and cost-effective method of achieving such optical entrapment is the Raman scattering from excited nanoparticles at the plasmonic resonance. The field of plasmonics is the study of the exploitation of appropriate layers of metal nanoparticles to increase the intensity of radiation in the semiconductor by means of near-field effects produced by nanoparticles. In this paper, we focus on the use of metal nanoparticles as plasmonic nanosensors with extremely high sensitivity, even reaching single-molecule detection. The study conducted in this paper was used to optimize the performance of a prototype of a plasmonic photovoltaic cell made at the Institute for Microelectronics and Microsystems IMM of Catania, Italy. This prototype was based on a multilayer structure composed of the following layers: glass, AZO, metal and dielectric. In order to obtain good results, it is necessary to use geometries that orthogonalize the absorption of light, allowing better transport of the photocarriers—and therefore greater efficiency—or the use of less pure materials. For this reason, this study is focused on optimizing the geometries of these multilayer plasmonic structures. More specifically, in this paper, by means of a neurocomputing procedure and an electromagnetic fields analysis performed by the finite elements method (FEM), we established the relationship between the thicknesses of Aluminum-doped Zinc oxide (AZO), metal, dielectric and their main properties, characterizing the plasmonic propagation phenomena as the optimal wavelengths values at the main interfaces AZO/METAL and METAL/DIELECTRIC

    Fragmentation of exotic oxygen isotopes

    Get PDF
    Abrasion-ablation models and the empirical EPAX parametrization of projectile fragmentation are described. Their cross section predictions are compared to recent data of the fragmentation of secondary beams of neutron-rich, unstable 19,20,21O isotopes at beam energies near 600 MeV/nucleon as well as data for stable 17,18O beams

    The NOBEL2 approach to resilience in future transport networks

    Get PDF
    IST project NOBEL2 results on resilience strategies for next-generation optical transport networks are presented, paving the way towards cost-effective, scalable and easy-to-maintain multi-service network architectures.Postprint (published version

    Estimating parameters for probabilistic linkage of privacy-preserved datasets.

    Get PDF
    Background: Probabilistic record linkage is a process used to bring together person-based records from within the same dataset (de-duplication) or from disparate datasets using pairwise comparisons and matching probabilities. The linkage strategy and associated match probabilities are often estimated through investigations into data quality and manual inspection. However, as privacy-preserved datasets comprise encrypted data, such methods are not possible. In this paper, we present a method for estimating the probabilities and threshold values for probabilistic privacy-preserved record linkage using Bloom filters. Methods: Our method was tested through a simulation study using synthetic data, followed by an application using real-world administrative data. Synthetic datasets were generated with error rates from zero to 20% error. Our method was used to estimate parameters (probabilities and thresholds) for de-duplication linkages. Linkage quality was determined by F-measure. Each dataset was privacy-preserved using separate Bloom filters for each field. Match probabilities were estimated using the expectation-maximisation (EM) algorithm on the privacy-preserved data. Threshold cut-off values were determined by an extension to the EM algorithm allowing linkage quality to be estimated for each possible threshold. De-duplication linkages of each privacy-preserved dataset were performed using both estimated and calculated probabilities. Linkage quality using the F-measure at the estimated threshold values was also compared to the highest F-measure. Three large administrative datasets were used to demonstrate the applicability of the probability and threshold estimation technique on real-world data. Results: Linkage of the synthetic datasets using the estimated probabilities produced an F-measure that was comparable to the F-measure using calculated probabilities, even with up to 20% error. Linkage of the administrative datasets using estimated probabilities produced an F-measure that was higher than the F-measure using calculated probabilities. Further, the threshold estimation yielded results for F-measure that were only slightly below the highest possible for those probabilities. Conclusions: The method appears highly accurate across a spectrum of datasets with varying degrees of error. As there are few alternatives for parameter estimation, the approach is a major step towards providing a complete operational approach for probabilistic linkage of privacy-preserved datasets

    Detecting referral and selection bias by the anonymous linkage of practice, hospital and clinic data using Secure and Private Record Linkage (SAPREL): case study from the evaluation of the Improved Access to Psychological Therapy (IAPT) service

    Get PDF
    Background: The evaluation of demonstration sites set up to provide improved access to psychological therapies (IAPT) comprised the study of all people identified as having common mental health problems (CMHP), those referred to the IAPT service, and a sample of attenders studied in-depth. Information technology makes it feasible to link practice, hospital and IAPT clinic data to evaluate the representativeness of these samples. However, researchers do not have permission to browse and link these data without the patients’ consent. Objective: To demonstrate the use of a mixed deterministic-probabilistic method of secure and private record linkage (SAPREL) - to describe selection bias in subjects chosen for in-depth evaluation. Method: We extracted, pseudonymised and used fuzzy logic to link multiple health records without the researcher knowing the patient’s identity. The method can be characterised as a three party protocol mainly using deterministic algorithms with dynamic linking strategies; though incorporating some elements of probabilistic linkage. Within the data providers’ safe haven we extracted: Demographic data, hospital utilisation and IAPT clinic data; converted post code to index of multiple deprivation (IMD); and identified people with CMHP. We contrasted the age, gender, ethnicity and IMD for the in-depth evaluation sample with people referred to IAPT, use hospital services, and the population as a whole. Results: The in IAPT-in-depth group had a mean age of 43.1 years; CI: 41.0 - 45.2 (n = 166); the IAPT-referred 40.2 years; CI: 39.4 - 40.9 (n = 1118); and those with CMHP 43.6 years SEM 0.15. (n = 12210). Whilst around 67% of those with a CMHP were women, compared to 70% of those referred to IAPT, and 75% of those subject to indepth evaluation (Chi square p< 0.001). The mean IMD score for the in-depth evaluation group was 36.6; CI: 34.2 - 38.9; (n = 166); of those referred to IAPT 38.7; CI: 37.9 - 39.6; (n = 1117); and of people with CMHP 37.6; CI 37.3- 37.9; (n = 12143). Conclusions: The sample studied in-depth were older, more likely female, and less deprived than people with CMHP, and fewer had recorded ethnic minority status. Anonymous linkage using SAPREL provides insight into the representativeness of a study population and possible adjustment for selection bias

    Coulomb fragmentation and Coulomb fission of relativistic heavy-ions and related nuclear structure aspects

    Get PDF
    The Coulomb excitation of 208Pb projectiles has been studied at an energy of 640 A MeV. Cross sections for the excitation of the two-phonon giant dipole resonance were measured for different targets, and show clear evidence for a two-step electromagnetic excitation mechanism. The experimental cross sections exceed those calculated in the harmonic oscillator approximation by a factor of 1.33 ± 0.16. The deduced 27-decay probability is consistent with the expectation in the harmonic limit. Finally, the excitation of the two-phonon giant dipole resonance in the deformed and fissile nucleus 238U is discussed
    • …
    corecore