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Abstract

Background: Probabilistic record linkage is a process used to bring together person-based records from within the
same dataset (de-duplication) or from disparate datasets using pairwise comparisons and matching probabilities.
The linkage strategy and associated match probabilities are often estimated through investigations into data quality
and manual inspection. However, as privacy-preserved datasets comprise encrypted data, such methods are not
possible. In this paper, we present a method for estimating the probabilities and threshold values for probabilistic
privacy-preserved record linkage using Bloom filters.

Methods: Our method was tested through a simulation study using synthetic data, followed by an application using
real-world administrative data. Synthetic datasets were generated with error rates from zero to 20% error. Our method
was used to estimate parameters (probabilities and thresholds) for de-duplication linkages. Linkage quality was
determined by F-measure. Each dataset was privacy-preserved using separate Bloom filters for each field. Match
probabilities were estimated using the expectation-maximisation (EM) algorithm on the privacy-preserved data. Threshold
cut-off values were determined by an extension to the EM algorithm allowing linkage quality to be estimated for each
possible threshold. De-duplication linkages of each privacy-preserved dataset were performed using both estimated and
calculated probabilities. Linkage quality using the F-measure at the estimated threshold values was also compared to the
highest F-measure. Three large administrative datasets were used to demonstrate the applicability of the probability and
threshold estimation technique on real-world data.

Results: Linkage of the synthetic datasets using the estimated probabilities produced an F-measure that was comparable
to the F-measure using calculated probabilities, even with up to 20% error. Linkage of the administrative datasets using
estimated probabilities produced an F-measure that was higher than the F-measure using calculated probabilities. Further,
the threshold estimation yielded results for F-measure that were only slightly below the highest possible for those
probabilities.

Conclusions: The method appears highly accurate across a spectrum of datasets with varying degrees of error. As there
are few alternatives for parameter estimation, the approach is a major step towards providing a complete operational
approach for probabilistic linkage of privacy-preserved datasets.
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Background
Record linkage is a process that allows us to gather
together person-based records that belong to the
same individual. In situations where unique identi-
fiers are not available, personally identifying informa-
tion such as name, date of birth and address are
used to link records from one or more data

collections. As administrative collections typically
capture information for large portions of the popula-
tion, the linked data allows researchers to answer
numerous health questions for the whole population
at relatively low cost.

Privacy-preserving record linkage
Legal, administrative and technical issues can prevent
the release of name-identified data for record linkage.
New methods have emerged that do not require the
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release of personally identifying information by data
custodians; rather, data custodians use specific encod-
ing processes to transform personally identifying in-
formation into a permanently non-identifiable state
(an irreversible ‘privacy-preserved’ state). These
methods are collectively referred to as privacy-
preserving record linkage (PPRL). Under a trusted
third party linkage model [1], this operation occurs
before the release of any data to record linkage units.
Thus, personally identifying information is not
disclosed by the data custodian. These PPRL methods
can be used within existing record linkage frame-
works, and are subject to some of the same
challenges [2].
One of the most promising PPRL techniques to

emerge is a method which uses Bloom filters in
record linkage [3]. A Bloom filter is a probabilistic
data structure originally developed to check set
membership that can also be used to approximate the
similarity of two sets. The ability to provide similarity
comparisons on two sets of data is highly desirable
for accurate record linkage.
An evaluation of Bloom filters in large-scale prob-

abilistic record linkage has shown high linkage quality
(equal to that achieved with unencrypted linkage)
with relatively good efficiency [4]. This evaluation
utilised single field Bloom filters as opposed to
record-level Bloom filters, where all identifiers are
added into a single Bloom filter [5]. One of the
outstanding challenges for a practical probabilistic
PPRL approach is to accurately estimate parameter
settings [4]. Typical methods to estimate parameters
involve manually examining small samples of data. In
the privacy-preserving case, this data is not available
to examine so alternate parameter estimation methods
are required.

Probabilistic record linkage
In probabilistic record linkage, individual records are
compared on a pairwise basis. This process makes the
number of possible comparisons extremely large for
all but small data files. To reduce computation over-
head, records are usually only compared if they have
information in common i.e. they have the same value
in a particular field or set of fields. Known as block-
ing, this method reduces the computational compari-
son space. Pairs of records in each block are
compared and assessed through comparison of the
values in each matching field (e.g. first name, sur-
name, address, etc.). As shown in Fig. 1, each field
comparison is assigned a field score, the value of
which depends on whether the field value agrees or
disagrees. These agreement and disagreement scores
(weights) are computed separately for each field. All

field scores are then summed to produce a final
score. If this score is greater than a set threshold
value, the record pair is designated a match. The set
of fields used in the linkage are chosen based on
characteristics such as completeness, consistency and
discriminating power within each dataset. The dis-
criminating power is a measure of entropy, indicating
how useful an identifier might be in the record link-
age process [6, 7].
In the Fellegi-Sunter model of record linkage [8],

the agreement and disagreement scores used in field
comparisons are based on the calculation of two spe-
cific probabilities, called the m-probability and
u-probability [8]. The m-probability is the likelihood
of two fields matching if the records belong to the
same individual. The u-probability is the likelihood of
two fields matching if the records do not belong to
the same individual. These two probabilities are con-
verted into agreement and disagreement weights for
each field as follows:

Agreement Weight ¼ log
m
u

� �
;

Disagreement Weight ¼ log
1−m
1−u

� �

The Fellegi-Sunter model incorporates a simplifying
assumption where the chances of agreement or
disagreement for one field is independent of the chances
of agreement or disagreement for another field [8]. This
independence assumption allows us to calculate agree-
ment and disagreement weights for each field separately.
Extensions to the Fellegi-Sunter model have been devel-
oped for approximate comparisons, allowing the assign-
ment of a partial weight for partial agreement that lies
somewhere between agreement and disagreement [9].
While there are many types of approximate comparisons
for various types of data, most deal with the distance
between two strings [10–12]. To fit these approximate
comparisons into a probabilistic model, the distance is
converted into a partial weight [13].
Missing values can be problematic in probabilistic

record linkage. Comparisons are typically treated in
one of three ways: a missing value is assigned the dis-
agreement weight, a zero weight, or a separate weight
accounted for explicitly. The last option extends the
independence assumption to include probabilities for
missing values, altering the calculations for weights.
Other approaches involve removing the field from
matching or even removing the entire record [10, 14].

Parameter estimation
Several methods have been developed to estimate m-
and u-probabilities [15, 16]; in practice, most methods
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are based on investigations around data quality and
prior knowledge, such as the iterative refinement pro-
cedure [17].
Automated methods for deriving m-probabilities,

such as through EM (expectation-maximisation) esti-
mation have been devised [16, 18, 19]. The EM
algorithm has the potential to provide accurate esti-
mates for m-probabilities, in some cases outperform-
ing the probabilities obtained via the iterative
refinement procedure [13]. Other estimation methods
do exist, such as an algebraic solution by Fellegi and
Sunter [8] and the IMSL routine ZXSSQ (an implementa-
tion of the Levenberg-Marquardt algorithm) [20]; how-
ever, these are more sensitive to initial parameters and
require adjustment functions to keep estimates within
bounds [21]. An extensive analysis of parameter
estimation techniques for the Fellegi-Sunter model of
linkage has been detailed by Herzog et al. [15].
Determination of the appropriate threshold setting

above which to accept record-pairs as valid matches
typically occur through manual inspection of record-
pairs within a range of weight scores [22]. The use of
PPRL methods within a probabilistic linkage frame-
work, where only encrypted identifiers are used for
linkage, preclude the use of any manual, clerical re-
view and so must rely on the use of alternative, com-
puterised methods to determine the best cut-off
values. This ability to correctly estimate parameters is
of paramount importance if PPRL techniques are to
be practical [4].
In this paper, we present a method for accurately

estimating probabilities and an optimal threshold cut-
off value that can be applied when using Bloom filters
within the Fellegi-Sunter model for record linkage.
The work builds on a previous privacy-preserving
study, which utilised a probabilistic record linkage
framework [4]. In this paper, we evaluate our param-
eter estimation method in two ways: firstly, in a
simulation study using synthetic datasets with varying
degrees of error; and secondly, on three large-scale
administrative datasets, comparing the resultant link-
age quality against the quality achieved using calcu-
lated m- and u-probabilities.

Methods
Simulation study using synthetic datasets
A series of synthetic datasets were created for our
simulation study. Firstly a single ‘master’ dataset was
created, containing 1 million records, with multiple
records belonging to the same individual. This dataset
did not contain any missing values, or errors typical
of what would be seen in administrative data. Then, a
series of new datasets were created by first taking the
error-free master dataset, and removing or degrading
the quality of particular fields.
The synthetic data was generated using an amended

version of the FEBRL data generator [23]. The distri-
bution of duplicate records (how many records per-
tain to each individual) was based on the distribution
found in the Western Australian hospital morbidity
data collection. The values found in the master data-
set were based on frequency distributions found in
the Western Australian population. Each record in the
dataset contained first name, middle name, surname, sex,
date of birth, address, suburb, and postcode information.
Address information was randomly selected from the
National Address File, a public dataset containing all valid
Western Australian addresses.1

Additional ‘corrupted’ datasets were created by
modifying the master dataset with a set level of error.
In the 1% error file, 1% of field values to be used for
linkage were randomly selected to have their values
set to missing; a further 1% were randomly selected
to have their values corrupted, through the use of
typographical errors, misspellings, truncation and
replacement of values. In this way, each record could
potentially have multiple fields set to missing or cor-
rupted. The same procedure was used to generate a
5% error file, 10% error file and 20% error file. A
privacy-preserved version of each dataset was created,
using single field Bloom filters.

Testing using administrative datasets
Three datasets comprising real administrative data
(hospital admissions records from New South Wales
(NSW), Western Australia (WA) and South Australia
(SA)) were used to demonstrate the applicability of

Fig. 1 Record comparison example
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the method to real-world data. These datasets have
previously been de-duplicated to a very high standard
using full identifiers. The results of those de-
duplication linkages are used in this study and act as
our ‘truth set’. The information in this ‘truth set’ was
not used during the linkage process or the estimation
of parameters, but was used only as a standard by
which to evaluate our results. This data was made
available as part of the Population Health Research
Network Proof of Concept 1 project [24].
Privacy-preserved versions of each administrative data-

set were created, using single field Bloom filters, in the
same way as the synthetic datasets. Due to the size of
these administrative datasets, five samples (a random
10%) of each privacy-preserved dataset were created;
probabilities are estimated for each sample. A de-
duplication linkage was performed on each sample and
also against the full dataset. The resulting quality was
calculated using the ‘truth set’.

Application of Bloom filters
The privacy-preserved versions of the synthetic and ad-
ministrative datasets were created using Bloom filters.
Bloom filters were constructed in line with previous
work [3]. An empty (or missing) field in the original
datasets was left as empty in the privacy-preserved
versions.
Matching strategies used for the datasets were based

on the strategies used in a published evaluation of link-
age software [25]. Two blocking strategies were used;
last name Soundex with first name initial, and date of
birth with sex. The matching identifiers included Bloom
filters for names, address and suburb, using the
Sørensen-Dice coefficient comparison for similarity [3].
Sørensen-Dice coefficient values are converted to partial
agreement values using a piecewise linear curve, created
using Winkler’s [13] method. All other fields, including
blocking variables, which are created at the same time as
the Bloom filters, used exact matches on cryptographic-
ally hashed values. Missing value comparisons were
assigned a zero weight.

Measuring linkage quality
In line with earlier work [3, 26], we used precision, recall
and F-measure as our linkage quality metrics. Precision
(also known as positive predictive value) measures the
proportion of true positive pairs (correct matches) found
from all classified matches. Recall (also known as sensi-
tivity) measures the proportion of true positive pairs
found from all true matches. Both precision and recall
return a score between 0 and 1, with higher scores indi-
cating less false positives and false negatives (missed
matches) respectively. The F-measure is the harmonic
mean between precision and recall, providing a single

figure with which we can compare results. Typically, a
middle-ground is sought between precision and recall,
as there is a trade-off between these values. As the prob-
abilistic linkage threshold is increased, the number of
false positives decreases (and so precision increases);
however, the number of correct matches missed will also
increase, leading to a decrease in recall.
The calculations for these metrics are provided below.

Precision ¼ True Positives
True Positivesþ False Positives

Recall ¼ True Positives
True Positivesþ False Negatives

Fmeasure ¼ 2� Precision� Recall
Precisionþ Recall

Estimating m and u probabilities
The EM algorithm has been used to calculate the m-
probabilities (m), u-probabilities (u) and the proportion
(p) of record pairs that match in probabilistic linkage
[21]. It is an iterative algorithm that uses the output
values of one iteration as the input to the next. We
added two additional variables to the EM algorithm as
described by Jaro [21], the missing m-probability and
missing u-probability values (denoted by mm and um re-
spectively), to more accurately estimate a single thresh-
old cut-off value (discussed later).
Jaro [21] suggests the algorithm is not particularly sen-

sitive to the starting values (m, u, mm, um,p). However,
the starting values for m should be higher than those for
u. We thus set an initial value of 0.1 for mm and um, 0.8
for m and 0.1 for u.
Given two files, A and B, we began by iterating

through all possible combinations of field comparisons
between A and B. The count of each field state combin-
ation was tabulated (an example is shown in Table 1).
There are, at most, 3n possible field state combinations
for n fields, assuming each field either agrees, disagrees
or is missing. The ‘missing’ state occurs when a pairwise
comparison involves a missing or empty value.
The first part of the EM algorithm is the expect-

ation step. For each field state combination, we calcu-
late recall and false positive rate (fpr). For recall, each
agreement in the table is replaced with m, each

Table 1 Field state combinations

First Name Last Name Sex Year of Birth Count

Agree Agree Agree Agree 1502

Agree Agree Missing Disagree 2142

Agree Disagree Disagree Missing 28,644

… … … … …
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disagreement with (1 – mm – m), and each missing
with mm. The product of these is the recall for that
field state combination. Similarly, for the fpr, each
agreement in the table is replaced with u, each dis-
agreement with (1 – um – u) and each missing with
um. The product of these provides the fpr.
The recall and fpr allow us to calculate the proportion

of true matches for each field state combination j:

pj ¼
p∙recallj

p∙recallj
� �

þ 1−pð Þ∙fprj
� �

The maximisation step involves the calculation of m, u,
mm, um and p. The m value for each field is calculated
as the ratio of true matches that ‘agree’ for that field to
the total true matches. Likewise, the u value for each
field is calculated as the ratio of false matches that
‘agree’ for that field to the total false matches. The mm

and um values use the ratio of matches that are
‘missing’.
The output values of (m, u, mm, um,p) are then used as

the input into the next iteration. Iterations are run until
values converge. Convergence will occur when the output
values differ only minimally from the input values.

Determining a threshold/cut-off setting
In addition to estimating probabilities for a probabil-
istic linkage, it is important to specify a threshold
value that provides optimal resultant linkage quality.
Using the information generated during the EM

step, we can estimate the quality of linkage for every
combination of weights between a range of possible
threshold values (i.e. using precision, recall and
F-measure). However, the table of field state combina-
tions used for the EM step only contains field state
combinations that were present in the datasets A and
B. The full set of possible combinations is required to
calculate a suitable threshold setting. Field state com-
binations that are not present in the field state com-
bination table were added with a count of zero, and
recall and fpr were calculated.
Using the full field state combination set, we calcu-

lated the weight for each field state combination.
Each agreement entry in the table was replaced with
the corresponding agreement weight for that field
using m and u calculated by the EM algorithm. Like-
wise, each disagreement entry was replaced with the
disagreement weight for that field using the same m
and u. Each ‘missing’ entry was replaced with a
weight of zero.
To estimate precision, recall and F-measure, we cal-

culated the True Positives and False Positives for every
field state combination. For these estimations, we re-
quired the total True Matches (true positives and

false negatives) and False Matches (true negatives and
false positives). The total True Matches was estimated
as part of the EM algorithm, and thus we used the
value calculated in the final iteration of the maximisa-
tion step. The total False Matches was re-estimated
as the total comparison space less the True Matches.
For a single file de-duplication, the total comparison

space is:

total comparisons ¼ RecordCount � ðRecordCount−1Þ
2

� �

To calculate the True Positives and False Positives, we
multiplied the recall and false positive rate for each field
state combination by the total True Matches and False
Matches respectively.

True Positivesj ¼ True Matches∙recallj

False Positivesj ¼ False Matches∙fprj

We calculated the True Positives and False Positives
for each field state combination so that precision could
be estimated. To calculate the precision for a particular
threshold, each field state combination with a weight
above that threshold value had their True Positives and
False Positives summed before precision was estimated.
We did not calculate False Negatives, as this can be

derived from the total True Matches (True Positives plus
False Negatives) value calculated earlier to estimate
recall. To calculate recall for a particular threshold, the
True Positives were summed from values for each field
state combination that have a weight above that
threshold.
As the computation requirements for calculating

precision, recall and F-measure are relatively low; we
calculated these for all possible weight combinations.
With a list of threshold values and corresponding
precision, recall and F-measure values, we were able
to determine an optimal threshold value for each
linkage (i.e. the single threshold score with the high-
est estimated F-measure).

Evaluation of parameter and threshold estimation
For each version of the synthetic datasets, and addition-
ally, for the administrative datasets, probabilities for m
and u were estimated together with a threshold cut-off
value. The EM algorithm was used to estimate m only
for each de-duplication linkage. The frequencies used
for our EM algorithm were calculated on blocks, and as
such, the number of non-matches observed was greatly
reduced, thereby introducing an undesirable bias into
the EM algorithm’s u estimates [21]. Consequently, we
elected to use Jaro’s u-probability estimate (on
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unblocked data) u, together with the EM algorithm’s
estimated m value.
As part of our simulation study, a de-duplication

linkage was run on each synthetic dataset using this
combination of values, and a linkage was also run
using calculated m- and u- probabilities. Optimal
threshold values were estimated for both sets of prob-
abilities. The highest F-measure and estimated thresh-
old F-measure were recorded and compared for all
synthetic dataset de-duplication linkages. Similarly, in
our test using real data, de-duplication linkages were
run on the administrative data; calculated m- and u-
probabilities were obtained using the administrative
data ‘truth sets’. The accuracy of the probability
estimates on the administrative dataset samples was
measured using the root-mean-square error (RMSE),
comparing the F-measure obtained from the EM algo-
rithm probabilities with that obtained from calculated
probabilities. RMSE was also used to compare the F-
measure obtained at the estimated threshold with that
which would be obtained at the correctly chosen
threshold. The formula used was as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

XDataset n

Dataset 1

Fmeasureestimated−Fmeasureactualð Þ2
vuut

Results
Synthetic data
The characteristics of the synthetic datasets are shown
in Table 2. As the dataset error rates increase, the num-
ber of unique values for each field increases significantly
because of the corruption introduced during dataset
creation. The discriminating power for each field also
increases with the simulated data corruption.

The results from de-duplication linkages of the syn-
thetic datasets using calculated probabilities and EM
probabilities are shown in Table 3. These results show
that the use of EM for probability estimation,
combined with our threshold estimation technique,
provided linkage quality comparable to the best
achievable using calculated probabilities, on data with
up to 20% error.
As one would expect, de-duplication of the master

dataset (without error) produced a perfect result with
F-measure of 1.0 at a threshold of 49 (the sum of all
agreement weights for each field). The use of EM
estimated m-probabilities produced the same result.
However, estimation of a threshold value for the
master dataset was significantly lower, with a value of
8 for both calculated and estimated probabilities.
Note, however, that although this threshold estimate is
much lower, it results in just 60 false positives from the en-
tire comparison space, giving an F-measure of 0.9999995.
While it is possible for the threshold to be esti-

mated to one or two decimal places, the use of a
whole number here was made for simplicity. It is pos-
sible that a better estimate could be made with a
finer precision but the differences between thresholds
shown here using whole numbers are already
negligible.
As Table 3 shows, using our estimation technique,

there is a slight decrease in linkage quality as error
rates in the data increase (i.e. for 1% error, an
F-measure of 0.9979 vs. 0.9979, compared to 20%
error with an F-measure of 0.5217 vs. 0.4917).
However, even at 10% error, the difference is very
small with an F-measure of 0.8443 vs. 0.8436.

Administrative data
The characteristics of the fields in each administrative
dataset, such as the number of unique values, missing

Table 2 Synthetic dataset characteristics

Field 0% Error 1% Error 5% Error 10% Error 20% Error

Unique
Values

Discriminating
Power

Unique
Values

Discriminating
Power

Unique
Values

Discriminating
Power

Unique Values Discriminating
Power

Unique
Values

Discriminating
Power

First Name 31,183 8.91 34,595 8.92 45,914 8.99 58,046 9.08 78,256 9.29

Middle Name 25,002 7.33 28,224 7.35 38,285 7.45 48,973 7.59 67,160 7.95

Last Name 56,507 10.87 61,198 10.88 77,088 10.96 94,925 11.07 125,483 11.35

Dob Year 112 6.49 114 6.49 116 6.50 117 6.51 119 6.53

Dob Month 12 3.58 12 3.58 12 3.58 12 3.58 12 3.58

Dob Day 31 4.94 31 4.94 31 4.94 31 4.94 31 4.93

Sex 2 1.00 2 1.00 2 1.00 2 1.00 2 1.00

Address 171,088 12.89 178,583 12.92 207,909 13.04 241,966 13.21 304,353 13.66

Suburb 1962 8.33 7390 8.36 19,664 8.48 31,054 8.65 49,929 9.10

Postcode 379 6.77 1755 6.80 2579 6.91 2981 7.06 3395 7.45
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percentage, and discriminating power were recorded,
shown in Table 4. The random samples generated for
each administrative dataset were highly representative of
the full dataset.

Linkage quality from EM estimates
The estimated m- and u-probabilities of the samples
reflect the characteristics described above, with negli-
gible differences observed between the samples for
each dataset. The estimated probabilities for each
dataset are shown in Table 5.
Comparisons of linkages using the calculated prob-

abilities and the EM m-probabilities with estimated
u-probabilities are shown in Table 6. The highest F-
measure obtained using the estimated probabilities
was slightly higher than that achieved using calcu-
lated probabilities in all cases.

Accuracy of threshold estimation
The quality of linkage using the F-measure at the esti-
mated threshold is compared to the highest F-measure
for each sample, as shown in Table 7. The RMSE values
for each dataset were 0.0019 for NSW, 0.0001 for SA
and 0.0046 for WA. The estimated threshold value was
slightly below the best threshold for each dataset.

Discussion
In our simulation study, the use of the EM algorithm to
estimate probabilities for a de-duplication linkage pro-
duced results comparable to those produced by calcu-
lated probabilities, even with synthetic datasets that
contained 20% introduced error. Similarly, in our tests
using administrative datasets, the probability and thresh-
old estimation technique produced very high-quality
linkage results. In comparison to the quality of linkage
using calculated probabilities, the probabilities used from
the EM algorithm produced linkage quality of the simu-
lation datasets that was comparable to the best possible.
However, we found better quality results using estimated
probabilities on the real administrative datasets, at least
in regards to F-measure. This is a somewhat surprising
result, and why this occurred for all three administrative
datasets is not entirely clear. A recent analysis of the
popular F-measure metric suggests that it may not
provide a fair comparison between linkage methods if
the selected thresholds produce a different number of
predicted matches [27]. This behaviour is one possible
explanation for our results, and future work will
consider additional metrics for measuring linkage qual-
ity. It should be noted that the differences between the
linkage quality results were relatively small, and we

Table 3 Synthetic dataset linkage quality - estimated vs. calculated

Data
Error
Rate

Calculated Probabilities EM m-probs and Estimated u-probs

Highest Estimated Highest Estimated

Threshold FMeasure Threshold FMeasure Threshold FMeasure Threshold FMeasure

0% 49 1.0000 8 0.9999 49 1.0000 8 0.9999

1% 9 0.9979 16 0.9978 13 0.9979 11 0.9979

5% 8 0.9549 16 0.9541 12 0.9549 11 0.9549

10% 8 0.8443 16 0.8399 12 0.8439 11 0.8436

20% 8 0.5217 16 0.4938 12 0.4999 11 0.4917

Table 4 Administrative dataset characteristics

NSW(13,534,177 records) SA(2,509,914 records) WA(6,772,949 records)

Field Unique
Values

Missing
%

Discriminating
Power

Unique
Values

Missing
%

Discriminating
Power

Unique
Values

Missing
%

Discriminating
Power

First Name 168,766 2.9% 8.61 124,849 5.5% 9.18 78,992 0.3% 8.54

Middle Name 114,686 54.2% 6.96 22,180 75.4% 7.19 61,241 40.8% 7.13

Last Name 291,595 0% 10.92 81,431 5.3% 10.81 123,481 0% 10.73

Dob Year 123 0% 6.47 115 0% 6.45 118 0% 6.39

Dob Month 12 0% 3.58 12 0% 3.58 12 0% 3.58

Dob Day 31 0% 4.94 31 0% 4.94 31 0% 4.94

Sex 2 0% 1.00 2 0% 1.00 2 0% 0.99

Address 3,084,889 1.5% 16.96 690,615 8.1% 14.92 1,350,796 0.2% 16.05

Suburb 49,843 0.5% 9.30 10,729 6.9% 7.85 5542 0.1% 7.73

Postcode 3947 0.8% 8.17 2238 8.5% 6.90 2319 0.2% 6.58
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would not expect this to be the case for datasets of all
sizes and quality.
The original unencrypted versions of these datasets

had previously been linked by Boyd et al. using probabil-
ities estimated with knowledge of previous linkages and
refinement through pilot linkages [24]. The probabilities
derived from the EM algorithm produced a higher F-
measure for both the NSW (0.996 vs. 0.995) and WA
(0.992 vs. 0.990) Bloom filter datasets; data for the unen-
crypted SA dataset was unavailable. On face value, at
least, these results indicate that use of the EM algorithm
for probability estimation is a viable option, especially
where sampling techniques for estimation are not avail-
able due to the privacy-preserved nature of the data.
Our study found that the m-probabilities estimated via

the EM algorithm did not necessarily match the calcu-
lated m-probabilities for each field; however, there was a
general consistency of the m-probabilities across all
fields. Both our synthetic datasets and the administrative
datasets contained many matches and were thus good
candidates for probabilities estimated through the EM
algorithm. The EM algorithm is known to perform
poorly with datasets that have too few matches [15].
Being able to identify and address this issue for privacy-
preserved data will require further research.
Our threshold estimation technique also returned very

good linkage quality, with a resulting F-measure that
consistently approached the best F-measure achievable

given the probabilities used. To our knowledge, no alter-
native method of estimating thresholds exists for use
with privacy-preserved data. Without the ability to
provide any manual review post-linkage, it is important
to be able to estimate a single accurate threshold cut-off
value. As such, this technique should be considered for
use with Bloom filters for probabilistic linkage.
The threshold values estimated in our study were con-

sistently higher than the optimum threshold when using
the calculated probabilities, with fewer false positives
and more false negatives returned in each of the linkages
(with the exception of the ‘perfect’ synthetic dataset).
Interestingly, we found the opposite to be true when
using the estimated probabilities, with a consistently
lower threshold. Additional simulation studies may help
to understand this effect and improve the estimation
accuracy. This effect may be a result of the blocking
technique used to gather field state combinations and
the similarities in the estimation methods for both prob-
abilities and threshold. Although it may be possible to
adjust for this underestimation, an advantage of using a
lower threshold is that alternative approaches can be
implemented which specifically target false positive
matches. It may be possible to run automated clerical
review procedures on the results, such as graph theory
techniques, to find and correct false positive errors [28].
The effectiveness of these techniques on privacy-
preserved data is unknown, however.

Table 5 Estimated probabilities

NSW SA WA

Field EM m-prob Est. u-prob EM m-prob Est. u-prob EM m-prob Est. u-prob

First Name 0.9817 0.0024 0.8707 0.0015 0.9732 0.0027

Middle Name 0.4686 0.0017 0.1846 0.0004 0.4385 0.0025

Last Name 0.9916 0.0005 0.8931 0.0005 0.9823 0.0006

Dob Year 0.9973 0.0113 0.9997 0.0114 0.9935 0.0119

Dob Month 0.9987 0.0834 0.9988 0.0834 0.9949 0.0835

Dob Day 0.9965 0.0325 0.9988 0.0325 0.9963 0.0326

Sex 0.9999 0.5008 1.0000 0.5010 0.9998 0.5018

Address 0.8325 7.99E-06 0.6486 2.8E-05 0.7338 1.7E-05

Suburb 0.9303 0.0016 0.7462 0.0038 0.8402 0.0047

Postcode 0.9540 0.0034 0.7574 0.0070 0.8640 0.0104

Table 6 Linkage quality (max F-measure) – EM vs. calculated

Dataset Probabilities Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 RMSE

NSW Calculated 0.9941 0.9943 0.9942 0.9941 0.9940

EM 0.9961 0.9965 0.9963 0.9963 0.9961 0.0021

SA Calculated 0.9532 0.9521 0.9529 0.9553 0.9532

EM 0.9590 0.9567 0.9563 0.9582 0.9589 0.0046

WA Calculated 0.9907 0.9904 0.9910 0.9905 0.9906

EM 0.9920 0.9916 0.9921 0.9917 0.9918 0.0012
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Future research will examine the use of the EM al-
gorithm on composite Bloom filters. While single
field Bloom filters provide excellent quality with prob-
abilistic linkage, they may not provide a sufficient
level of privacy for some stakeholders. As such, the
use of composite Bloom filters may be necessary.
Row-level Bloom filters would not be viable; at least
two fields are required for probabilistic record link-
age. However, multiple Bloom filters comprising two
or three fields may function sufficiently. The use of
the EM algorithm and the threshold estimation
technique on Bloom filters comprising two or more
fields is untested, and more research into the per-
formance of the EM algorithm on data containing
composite fields is warranted.
Finally, it is worth noting that the EM algorithm

and threshold estimation technique described in this
paper have wider application and could be used for
any probabilistic linkage (encrypted and unencrypted),
not just Bloom filters for PPRL. Provided the datasets
being linked have sufficient matches, the estimation
technique will produce optimal m-probabilities and a
suitable threshold cut-off for the linkage. The u-
probabilities can be estimated using Jaro’s estimation
method. Unencrypted linkages would benefit from this
technique as well, providing a strong empirical foun-
dation from which to build a robust linkage strategy.

Conclusions
Previous evaluations have shown that privacy-preserving
record linkage can be as accurate as traditional un-
encoded linkage. An important element in developing a
practical probabilistic privacy-preserving approach is to
determine how to appropriately set parameters without
recourse to manual inspection or prior knowledge of
data. As we have shown, use of the EM algorithm and
our threshold estimation technique provides a robust
method of estimating parameters for probabilistic link-
age of Bloom filter datasets. This method appears highly
accurate on datasets with varying error levels. Further
testing is required on real-world datasets with poorer
quality data and on datasets with fewer potential
matches. The ability for these techniques to produce
consistently accurate results on a variety of data will

determine whether they are viable in an operational
setting.

Endnotes
1Available from https://data.gov.au/dataset/geocoded-

national-address-file-g-naf
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