31 research outputs found

    GABA, glutamine, glutamate oxidation and succinic semialdehyde dehydrogenase expression in human gliomas

    Get PDF
    Bioenergetic characterisation of malignant tissues revealed that different tumour cells can catabolise multiple substrates as salvage pathways, in response to metabolic stress. Altered metabolism in gliomas has received a lot of attention, especially in relation to IDH mutations, and the associated oncometabolite D-2-hydroxyglutarate (2-HG) that impact on metabolism, epigenetics and redox status. Astrocytomas and oligodendrogliomas, collectively called diffuse gliomas, are derived from astrocytes and oligodendrocytes that are in metabolic symbiosis with neurons; astrocytes can catabolise neuron-derived glutamate and gamma-aminobutyric acid (GABA) for supporting and regulating neuronal functions.Metabolic characteristics of human glioma cell models - including mitochondrial function, glycolytic pathway and energy substrate oxidation - in relation to IDH mutation status and after 2-HG incubation were studied to understand the Janus-faced role of IDH1 mutations in the progression of gliomas/astrocytomas. The metabolic and bioenergetic features were identified in glioma cells using wild-type and genetically engineered IDH1-mutant glioblastoma cell lines by metabolic analyses with Seahorse, protein expression studies and liquid chromatography-mass spectrometry.U251 glioma cells were characterised by high levels of glutamine, glutamate and GABA oxidation. Succinic semialdehyde dehydrogenase (SSADH) expression was correlated to GABA oxidation. GABA addition to glioma cells increased proliferation rates. Expression of mutated IDH1 and treatment with 2-HG reduced glutamine and GABA oxidation, diminished the pro-proliferative effect of GABA in SSADH expressing cells. SSADH protein overexpression was found in almost all studied human cases with no significant association between SSADH expression and clinicopathological parameters (e.g. IDH mutation).Our findings demonstrate that SSADH expression may participate in the oxidation and/or consumption of GABA in gliomas, furthermore, GABA oxidation capacity may contribute to proliferation and worse prognosis of gliomas. Moreover, IDH mutation and 2-HG production inhibit GABA oxidation in glioma cells. Based on these data, GABA oxidation and SSADH activity could be additional therapeutic targets in gliomas/glioblastomas

    Melanoma antigen recognition by tumour-infiltrating T lymphocytes (TIL): effect of differential expression of Melan-A/MART-1

    No full text
    We have isolated, from an individual patient with metastatic melanoma, a series of eight TIL clones capable of lysing autologous melanoma cell targets. Six of the eight clones expressed TCRAV2S1 and lysed targets expressing HLA-A2 and the Melan-A/MART-1 peptide: AAGIGILTV. Polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) analysis showed that the Melan-A/MART-1-specific clones were predominant in the bulk culture prior to cloning. However, the tumour progressed in vivo even in the presence of these tumour cell-lytic clones. Using the anti-Melan-A/MART-1 MoAb (A-103), we noted that Melan-A/MART-1 expression on three melanoma cell lines varied considerably during in vitro culture, in the absence of T cell immunoselection, relative to cell density. Tumour cells which spontaneously decreased Melan-A/MART-1 expression were less susceptible to specific TIL lysis. Melan-A/MART-1 expression and susceptibility to lysis increased in cells cultured at lower density. These data suggest that modulation of tumour antigen may account for tumour progression in the presence of tumour cell-lytic T lymphocytes. The observations suggest a possible explanation for the common finding of Melan-A/MART-1-specific lytic TIL in clinically progressing melanomas, as well as a possible pathway for therapeutic intervention

    Apolipoprotein CIII hyperactivates β cell CaV1 channels through SR-BI/β1 integrin-dependent coactivation of PKA and Src

    No full text
    Apolipoprotein CIII (ApoCIII) not only serves as an inhibitor of triglyceride hydrolysis but also participates in diabetes-related pathological events such as hyperactivation of voltage-gated Ca(2+) (Ca(V)) channels in the pancreatic β cell. However, nothing is known about the molecular mechanisms whereby ApoCIII hyperactivates β cell Ca(V) channels. We now demonstrate that ApoCIII increased Ca(V)1 channel open probability and density. ApoCIII enhanced whole-cell Ca(2+) currents and the Ca(V)1 channel blocker nimodipine completely abrogated this enhancement. The effect of ApoCIII was not influenced by individual inhibition of PKA, PKC, or Src. However, combined inhibition of PKA, PKC, and Src counteracted the effect of ApoCIII, similar results obtained by coinhibition of PKA and Src. Moreover, knockdown of β1 integrin or scavenger receptor class B type I (SR-BI) prevented ApoCIII from hyperactivating β cell Ca(V) channels. These data reveal that ApoCIII hyperactivates β cell Ca(V)1 channels through SR-BI/β1 integrin-dependent coactivation of PKA and Src
    corecore