9 research outputs found

    Enhanced laser-driven proton acceleration using nanowire targets

    Get PDF
    Laser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfer such as to maximize the proton kinetic energy and number. A way to achieve this is using nanostructured target surfaces in the laser-matter interaction. In this paper, we show that nanowire structures can increase the maximum proton energy by a factor of two, triple the proton temperature and boost the proton numbers, in a campaign performed on the ultra-high contrast 10 TW laser at the Lund Laser Center (LLC). The optimal nanowire length, generating maximum proton energies around 6 MeV, is around 1–2 \upmum. This nanowire length is sufficient to form well-defined highly-absorptive NW forests and short enough to minimize the energy loss of hot electrons going through the target bulk. Results are further supported by Particle-In-Cell simulations. Systematically analyzing nanowire length, diameter and gap size, we examine the underlying physical mechanisms that are provoking the enhancement of the longitudinal accelerating electric field. The parameter scan analysis shows that optimizing the spatial gap between the nanowires leads to larger enhancement than by the nanowire diameter and length, through increased electron heating

    Adverse events in apheresis: An update of the WAA registry data

    Get PDF
    Apheresis with different procedures and devices are used for a variety of indications that may have different adverse events (AEs). The aim of this study was to clarify the extent and possible reasons of various side effects based on data from a multinational registry. The WAA-apheresis registry data focus on adverse events in a total of 50846 procedures in 7142 patients (42% women). AEs were graded as mild, moderate (need for medication), severe (interruption due to the AE) or death (due to AE). More AEs occurred during the first procedures versus subsequent (8.4 and 5.5%, respectively). AEs were mild in 2.4% (due to access 54%, device 7%, hypotension 15%, tingling 8%), moderate in 3% (tingling 58%, urticaria 15%, hypotension 10%, nausea 3%), and severe in 0.4% of procedures (syncope/hypotension 32%, urticaria 17%, chills/fever 8%, arrhythmia/asystole 4.5%, nausea/vomiting 4%). Hypotension was most common if albumin was used as the replacement fluid, and urticaria when plasma was used. Arrhythmia occurred to similar extents when using plasma or albumin as replacement. In 64% of procedures with bronchospasm, plasma was part of the replacement fluid used. Severe AEs are rare. Although most reactions are mild and moderate, several side effects may be critical for the patient. We present side effects in relation to the procedures and suggest that safety is increased by regular vital sign measurements, cardiac monitoring and by having emergency equipment nearby

    Enhancing and controlling single-atom high-harmonic generation spectra: a time-dependent density-functional scheme

    No full text
    High harmonic generation (HHG) provides a flexible framework for the development of coherent light sources in the extreme-ultraviolet and soft X-ray regimes. However it suffers from low conversion efficiencies as the control of the HHG spectral and temporal characteristics requires manipulating electron trajectories on attosecond time scale. The phase matching mechanism has been employed to selectively enhance specific quantum paths leading to HHG. A few important fundamental questions remain open, among those how much of the enhancement can be achieved by the single-emitter and what is the role of correlations (or the electronic structure) in the selectivity and control of HHG generation. Here we address those questions by examining computationally the possibility of optimizing the HHG spectrum of isolated hydrogen and helium atoms by shaping the slowly varying envelope of a 800 nm, 200-cycles long laser pulse. The spectra are computed with a fully quantum mechanical description, by explicitly computing the time-dependent dipole moment of the systems using a time-dependent density-functional approach (or the single-electron Schrödinger equation for the case of H), on top of a one-dimensional model. The sought optimization corresponds to the selective enhancement of single harmonics, which we find to be significant. This selectivity is entirely due to the single atom response, and not to any propagation or phase-matching effect. Moreover, we see that the electronic correlation plays a role in the determining the degree of optimization that can be obtained
    corecore