26 research outputs found

    Abl depletion via autophagy mediates the beneficial effects of quercetin against Alzheimer pathology across species

    Get PDF
    Alzheimer's disease is the most common age-associated neurodegenerative disorder and the most frequent form of dementia in our society. Aging is a complex biological process concurrently shaped by genetic, dietary and environmental factors and natural compounds are emerging for their beneficial effects against age-related disorders. Besides their antioxidant activity often described in simple model organisms, the molecular mechanisms underlying the beneficial effects of different dietary compounds remain however largely unknown. In the present study, we exploit the nematode Caenorhabditis elegans as a widely established model for aging studies, to test the effects of different natural compounds in vivo and focused on mechanistic aspects of one of them, quercetin, using complementary systems and assays. We show that quercetin has evolutionarily conserved beneficial effects against Alzheimer's disease (AD) pathology: it prevents Amyloid beta (A beta)-induced detrimental effects in different C. elegans AD models and it reduces A beta-secretion in mammalian cells. Mechanistically, we found that the beneficial effects of quercetin are mediated by autophagy-dependent reduced expression of Abl tyrosine kinase. In turn, autophagy is required upon Abl suppression to mediate quercetin's protective effects against A beta toxicity. Our data support the power of C. elegans as an in vivo model to investigate therapeutic options for AD

    Control of poly(A) polymerase level is essential to cytoplasmic polyadenylation and early development in Drosophila

    No full text
    Poly(A) polymerase (PAP) has a role in two processes, polyadenylation of mRNA precursors in the nucleus and translational control of certain mRNAs by cytoplasmic elongation of their poly(A) tails, particularly during early development. It was found recently that at least three different PAP genes exist in mammals, encoding several PAP isoforms. The in vivo specificity of function of each PAP isoform currently is unknown. Here, we analyse PAP function in Drosophila. We show that a single PAP isoform exists in Drosophila that is encoded by the hiiragi gene. This single Drosophila PAP is active in specific polyadenylation in vitro and is involved in both nuclear and cytoplasmic polyadenylation in vivo. Therefore, the same PAP can be responsible for both processes. In addition, in vivo overexpression of PAP does not affect poly(A) tail length during nuclear polyadenylation, but leads to a dramatic elongation of poly(A) tails and a loss of specificity during cytoplasmic polyadenylation, resulting in embryonic lethality. This demonstrates that regulation of the PAP level is essential for controlled cytoplasmic polyadenylation and early development

    Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation

    No full text
    The CCR4-NOT complex is the main enzyme catalyzing the deadenylation of mRNA. We have investigated the composition of this complex in Drosophila melanogaster by immunoprecipitation with a monoclonal antibody directed against NOT1. The CCR4, CAF1 (=POP2), NOT1, NOT2, NOT3, and CAF40 subunits were associated in a stable complex, but NOT4 was not. Factors known to be involved in mRNA regulation were prominent among the other proteins coprecipitated with the CCR4-NOT complex, as analyzed by mass spectrometry. The complex was localized mostly in the cytoplasm but did not appear to be a major component of P bodies. Of the known CCR4 paralogs, Nocturnin was found associated with the subunits of the CCR4-NOT complex, whereas Angel and 3635 were not. RNAi experiments in Schneider cells showed that CAF1, NOT1, NOT2, and NOT3 are required for bulk poly(A) shortening and hsp70 mRNA deadenylation, but knock-down of CCR4, CAF40, and NOT4 did not affect these processes. Overexpression of catalytically dead CAF1 had a dominant-negative effect on mRNA decay. In contrast, overexpression of inactive CCR4 had no effect. We conclude that CAF1 is the major catalytically important subunit of the CCR4-NOT complex in Drosophila Schneider cells. Nocturnin may also be involved in mRNA deadenylation, whereas there is no evidence for a similar role of Angel and 3635

    The Drosophila melanogaster Gene cg4930 Encodes a High Affinity Inhibitor for Endonuclease G*S⃞

    No full text
    Endonuclease G (EndoG) is a mitochondrial enzyme believed to be released during apoptosis to participate in the degradation of nuclear DNA. This paper describes a Drosophila protein, EndoGI, which inhibits EndoG specifically. EndoG and EndoGI associate with subpicomolar affinity, forming a 2:1 complex in which dimeric EndoG is bound by two tandemly repeated homologous domains of monomeric EndoGI. Binding appears to involve the active site of EndoG. EndoGI is present in the cell nucleus at micromolar concentrations. Upon induction of apoptosis, levels of the inhibitor appear to be reduced, and it is relocalized to the cytoplasm. EndoGI, encoded by the predicted open reading frame cg4930, is expressed throughout Drosophila development. Flies homozygous for a hypomorphic EndoGI mutation have a strongly reduced viability, which is modulated by genetic background and diet. We propose that EndoGI protects the cell against low levels of EndoG outside mitochondria

    Neocortical pyramidal neurons with axons emerging from dendrites are frequent in non-primates, but rare in monkey and human

    No full text
    The canonical view of neuronal function is that inputs are received by dendrites and somata, become integrated in the somatodendritic compartment and upon reaching a sufficient threshold, generate axonal output with axons emerging from the cell body. The latter is not necessarily the case. Instead, axons may originate from dendrites. The terms ‘axon carrying dendrite’ (AcD) and ‘AcD neurons’ have been coined to describe this feature. In rodent hippocampus, AcD cells are shown to be functionally ‘privileged’, since inputs here can circumvent somatic integration and lead to immediate action potential initiation in the axon. Here, we report on the diversity of axon origins in neocortical pyramidal cells of rodent, ungulate, carnivore, and primate. Detection methods were Thy-1-EGFP labeling in mouse, retrograde biocytin tracing in rat, cat, ferret, and macaque, SMI-32/ÎČIV-spectrin immunofluorescence in pig, cat, and macaque, and Golgi staining in macaque and human. We found that in non-primate mammals, 10–21% of pyramidal cells of layers II–VI had an AcD. In marked contrast, in macaque and human, this proportion was lower and was particularly low for supragranular neurons. A comparison of six cortical areas (being sensory, association, and limbic in nature) in three macaques yielded percentages of AcD cells which varied by a factor of 2 between the areas and between the individuals. Unexpectedly, pyramidal cells in the white matter of postnatal cat and aged human cortex exhibit AcDs to much higher percentages. In addition, interneurons assessed in developing cat and adult human cortex had AcDs at type-specific proportions and for some types at much higher percentages than pyramidal cells. Our findings expand the current knowledge regarding the distribution and proportion of AcD cells in neocortex of non-primate taxa, which strikingly differ from primates where these cells are mainly found in deeper layers and white matter

    Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch

    No full text
    International audienceTranslational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B‱Tral complex may be at the core of repression

    Y-P30 induces the proteolytic cleavage of the extracellular domain of SDC-2.

    No full text
    <p>(a) COS7 cells, expressing SDC-2intmyc-GFP, were supplemented with 20 ”M Y-P30 or a mock control. For the inhibition of matrix metalloproteinases either 50 nM GM6001 or 20 nM of MMP9/13 inhibitor I were used. After 3 h the culture media were collected, the containing proteins precipitated with ethanol and subsequently analysed with quantitative immunoblotting. In order to analyse the successful over expression and membrane-incorporation of the tagged fusion proteins, the respective cells were harvested, fractionated and the membrane proteins evaluated on western blots. A representative quantitative immunoblot analysis of the SDC-2 ecto-domain from the culture medium is shown in (a). Note that supplementation with Y-P30 increases the amount of the myc-tagged SDC-2 ecto-domain, whereas GM6001 as well as MMP9/13I abolished the Y-P30 dependent cleavage. The total expression and incorporation of the SDC-2 construct was analysed in membranes after subcellular fractionation using western-blot analysis (b). The relative amounts of the detected SDC-2 ecto-domains from the culture media are depicted in (c) as % to the control. N: 3–6; *** p<0.0001. (d) Illustrates an immunofluorescence image of the SDC-2intmyc-GFP expression in COS7 cells, showing a clear merge of the GFP-fluorescence from the C-terminus of the fusion protein and the myc-tag, incorporated into the ecto-domain of SDC-2. Scale bar is 20 ”m.</p
    corecore