41 research outputs found

    Tracking the Martian CO2 Polar Ice Caps in Infrared Images

    Get PDF
    Researchers at NASA s Jet Propulsion Laboratory have developed a method for automatically tracking the polar caps on Mars as they advance and recede each year (see figure). The seasonal Mars polar caps are composed mainly of CO2 ice and are therefore cold enough to stand out clearly in infrared data collected by the Thermal Emission Imaging System (THEMIS) onboard the Mars Odyssey spacecraft. The Bimodal Image Temperature (BIT) histogram analysis algorithm analyzes raw, uncalibrated data to identify images that contain both "cold" ("polar cap") and "warm" ("not polar cap") pixels. The algorithm dynamically identifies the temperature that separates these two regions. This flexibility is critical, because in the absence of any calibration, the threshold temperature can vary significantly from image to image. Using the identified threshold, the algorithm classifies each pixel in the image as "polar cap" or "not polar cap," then identifies the image row that contains the spatial transition from "polar cap" to "not polar cap." While this method is useful for analyzing data that has already been returned by THEMIS, it has even more significance with respect to data that has not yet been collected. Instead of seeking the polar cap only in specific, targeted images, the simplicity and efficiency of this method makes it feasible for direct, onboard use. That is, THEMIS could continuously monitor its observations for any detections of the polar-cap edge, producing detections over a wide range of spatial and temporal conditions. This effort can greatly contribute to our understanding of long-term climatic change on Mars

    Late Cenozoic diversification of the austral genus Lagenophora (Astereae, Asteraceae)

    Get PDF
    Lagenophora (Astereae, Asteraceae) has 14 species in New Zealand, Australia, Asia, southern South America, Gough Island and Tristan da Cunha. Phylogenetic relationships in Lagenophora were inferred using nuclear and plastid DNA regions. Reconstruction of spatio-temporal evolution was estimated using parsimony, Bayesian inference and likelihood methods, a Bayesian relaxed molecular clock and ancestral area and habitat reconstructions. Our results support a narrow taxonomic concept of Lagenophora including only a core group of species with one clade diversifying in New Zealand and another in South America. The split between the New Zealand and South American Lagenophora dates from 11.2 Mya [6.1–17.4 95% highest posterior density (HPD)]. The inferred ancestral habitats were openings in beech forest and subalpine tussockland. The biogeographical analyses infer a complex ancestral area for Lagenophora involving New Zealand and southern South America. Thus, the estimated divergence times and biogeographical reconstructions provide circumstantial evidence that Antarctica may have served as a corridor for migration until the expansion of the continental ice during the late Cenozoic. The extant distribution of Lagenophora reflects a complex history that could also have involved direct long-distance dispersal across southern oceans.Fil: Sancho, Gisela. Universidad Nacional de la Plata. Facultad de Cs.naturales y Museo. Departamento Científico de Plantas Vasculares; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: De Lange, Peter. Ecosystems And Species Unit. Department of Conservation; Nueva ZelandaFil: Donato, Mariano Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Barkla, John. Otago Conservancy; Nueva ZelandaFil: Wagstaff, Steve J.. Allan Herbarium; Nueva Zeland

    Towards Onboard Orbital Tracking of Seasonal Polar Volatiles on Mars

    Get PDF
    Current conditions on Mars support both a residual polar cap, composed mainly of water ice, and a seasonal cap, composed of CO2, which appears and disappears each winter. Kieffer and Titus characterized the recession of the seasonal south polar cap using an arctangent curve fit based on data from the Thermal Emission Spectrometer on Mars Global Surveyor [1]. They also found significant interannual deviations, at the regional scale, in the recession rate [2]. Further observations will enable the refinement of our models of polar cap evolution in both hemispheres. We have developed the Bimodal Image Temperature (BIT) Histogram Analysis method for the automated detection and tracking of the seasonal polar ice caps on Mars. It is specifically tailored for possible use onboard a spacecraft. We have evaluated BIT on uncalibrated data collected by the Thermal Emission Imaging System (THEMIS) instrument [3] on the Mars Odyssey spacecraft. In this paper, we focus on the northern seasonal cap, but our approach is directly applicable to the future analysis of the southern seasonal ice cap as well

    QTLs for shelf life in lettuce co-locate with those for leaf biophysical properties but not with those for leaf developmental traits

    Get PDF
    Developmental and biophysical leaf characteristics that influence post-harvest shelf life in lettuce, an important leafy crop, have been examined. The traits were studied using 60 informative F9 recombinant inbed lines (RILs) derived from a cross between cultivated lettuce (Lactuca sativa cv. Salinas) and wild lettuce (L. serriola acc. UC96US23). Quantitative trait loci (QTLs) for shelf life co-located most closely with those for leaf biophysical properties such as plasticity, elasticity, and breakstrength, suggesting that these are appropriate targets for molecular breeding for improved shelf life. Significant correlations were found between shelf life and leaf size, leaf weight, leaf chlorophyll content, leaf stomatal index, and epidermal cell number per leaf, indicating that these pre-harvest leaf development traits confer post-harvest properties. By studying the population in two contrasting environments in northern and southern Europe, the genotype by environment interaction effects of the QTLs relevant to leaf development and shelf life were assessed. In total, 107 QTLs, distributed on all nine linkage groups, were detected from the 29 traits. Only five QTLs were common in both environments. Several areas where many QTLs co-located (hotspots) on the genome were identified, with relatively little overlap between developmental hotspots and those relating to shelf life. However, QTLs for leaf biophysical properties (breakstrength, plasticity, and elasticity) and cell area correlated well with shelf life, confirming that the ideal ideotype lettuce should have small cells with strong cell walls. The identification of QTLs for leaf development, strength, and longevity will lead to a better understanding of processability at a genetic and cellular level, and allow the improvement of salad leaf quality through marker-assisted breeding

    VAST: An ASKAP Survey for Variables and Slow Transients

    Get PDF
    The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of five seconds and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.Comment: 29 pages, 8 figures. Submitted for publication in Pub. Astron. Soc. Australi

    SLAMBench2: Multi-Objective Head-to-Head Benchmarking for Visual SLAM

    Get PDF
    SLAM is becoming a key component of robotics and augmented reality (AR) systems. While a large number of SLAM algorithms have been presented, there has been little effort to unify the interface of such algorithms, or to perform a holistic comparison of their capabilities. This is a problem since different SLAM applications can have different functional and non-functional requirements. For example, a mobile phonebased AR application has a tight energy budget, while a UAV navigation system usually requires high accuracy. SLAMBench2 is a benchmarking framework to evaluate existing and future SLAM systems, both open and close source, over an extensible list of datasets, while using a comparable and clearly specified list of performance metrics. A wide variety of existing SLAM algorithms and datasets is supported, e.g. ElasticFusion, InfiniTAM, ORB-SLAM2, OKVIS, and integrating new ones is straightforward and clearly specified by the framework. SLAMBench2 is a publicly-available software framework which represents a starting point for quantitative, comparable and validatable experimental research to investigate trade-offs across SLAM systems

    Mixed methods study protocol for combining stakeholder-led rapid evaluation with near real-time continuous registry data to facilitate evaluations of quality of care in intensive care units [version 1; peer review: awaiting peer review]

    Get PDF
    BACKGROUND: Improved access to healthcare in low- and middle-income countries (LMICs) has not equated to improved health outcomes. Absence or unsustained quality of care is partly to blame. Improving outcomes in intensive care units (ICUs) requires delivery of complex interventions by multiple specialties working in concert, and the simultaneous prevention of avoidable harms associated with the illness and the treatment interventions. Therefore, successful design and implementation of improvement interventions requires understanding of the behavioural, organisational, and external factors that determine care delivery and the likelihood of achieving sustained improvement. We aim to identify care processes that contribute to suboptimal clinical outcomes in ICUs located in LMICs and to establish barriers and enablers for improving the care processes. METHODS: Using rapid evaluation methods, we will use four data collection methods: 1) registry embedded indicators to assess quality of care processes and their associated outcomes; 2) process mapping to provide a preliminary framework to understand gaps between current and desired care practices; 3) structured observations of processes of interest identified from the process mapping and; 4) focus group discussions with stakeholders to identify barriers and enablers influencing the gap between current and desired care practices. We will also collect self-assessments of readiness for quality improvement. Data collection and analysis will be performed in parallel and through an iterative process across eight countries: Kenya, India, Malaysia, Nepal, Pakistan, South Africa, Uganda and Vietnam. CONCLUSIONS: The results of our study will provide essential information on where and how care processes can be improved to facilitate better quality of care to critically ill patients in LMICs; thus, reduce preventable mortality and morbidity in ICUs. Furthermore, understanding the rapid evaluation methods that will be used for this study will allow other researchers and healthcare professionals to carry out similar research in ICUs and other health services

    Navigating the Landscape for Real-time Localisation and Mapping for Robotics, Virtual and Augmented Reality

    Get PDF
    Visual understanding of 3D environments in real-time, at low power, is a huge computational challenge. Often referred to as SLAM (Simultaneous Localisation and Mapping), it is central to applications spanning domestic and industrial robotics, autonomous vehicles, virtual and augmented reality. This paper describes the results of a major research effort to assemble the algorithms, architectures, tools, and systems software needed to enable delivery of SLAM, by supporting applications specialists in selecting and configuring the appropriate algorithm and the appropriate hardware, and compilation pathway, to meet their performance, accuracy, and energy consumption goals. The major contributions we present are (1) tools and methodology for systematic quantitative evaluation of SLAM algorithms, (2) automated, machine-learning-guided exploration of the algorithmic and implementation design space with respect to multiple objectives, (3) end-to-end simulation tools to enable optimisation of heterogeneous, accelerated architectures for the specific algorithmic requirements of the various SLAM algorithmic approaches, and (4) tools for delivering, where appropriate, accelerated, adaptive SLAM solutions in a managed, JIT-compiled, adaptive runtime context.Comment: Proceedings of the IEEE 201

    Establishing a large prospective clinical cohort in people with head and neck cancer as a biomedical resource: head and neck 5000

    Get PDF
    BACKGROUND: Head and neck cancer is an important cause of ill health. Survival appears to be improving but the reasons for this are unclear. They could include evolving aetiology, modifications in care, improvements in treatment or changes in lifestyle behaviour. Observational studies are required to explore survival trends and identify outcome predictors. METHODS: We are identifying people with a new diagnosis of head and neck cancer. We obtain consent that includes agreement to collect longitudinal data, store samples and record linkage. Prior to treatment we give participants three questionnaires on health and lifestyle, quality of life and sexual history. We collect blood and saliva samples, complete a clinical data capture form and request a formalin fixed tissue sample. At four and twelve months we complete further data capture forms and send participants further quality of life questionnaires. DISCUSSION: This large clinical cohort of people with head and neck cancer brings together clinical data, patient-reported outcomes and biological samples in a single co-ordinated resource for translational and prognostic research
    corecore