21 research outputs found

    What can we learn about GW Physics with an elastic spherical antenna?

    Full text link
    A general formalism is set up to analyse the response of an arbitrary solid elastic body to an arbitrary metric Gravitational Wave perturbation, which fully displays the details of the interaction antenna-wave. The formalism is applied to the spherical detector, whose sensitivity parameters are thereby scrutinised. A multimode transfer function is defined to study the amplitude sensitivity, and absorption cross sections are calculated for a general metric theory of GW physics. Their scaling properties are shown to be independent of the underlying theory, with interesting consequences for future detector design. The GW incidence direction deconvolution problem is also discussed, always within the context of a general metric theory of the gravitational field.Comment: 21 pages, 7 figures, REVTeX, enhanced Appendix B with numerical values and mathematical detail. See also gr-qc/000605

    Numerically generated quasi-equilibrium orbits of black holes: Circular or eccentric?

    Get PDF
    We make a comparison between results from numerically generated, quasi-equilibrium configurations of compact binary systems of black holes in close orbits, and results from the post-Newtonian approximation. The post-Newtonian results are accurate through third PN order (O(v/c)^6 beyond Newtonian gravity), and include rotational and spin-orbit effects, but are generalized to permit orbits of non-zero eccentricity. Both treatments ignore gravitational radiation reaction. The energy E and angular momentum J of a given configuration are compared between the two methods as a function of the orbital angular frequency \Omega. For small \Omega, corresponding to orbital separations a factor of two larger than that of the innermost stable orbit, we find that, if the orbit is permitted to be slightly eccentric, with e ranging from \approx 0.03 to \approx 0.05, and with the two objects initially located at the orbital apocenter (maximum separation), our PN formulae give much better fits to the numerically generated data than do any circular-orbit PN methods, including various ``effective one-body'' resummation techniques. We speculate that the approximations made in solving the initial value equations of general relativity numerically may introduce a spurious eccentricity into the orbits.Comment: 6 pages, 4 figures, to be submitted to Phys. Rev.

    Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections

    Get PDF
    A particle of mass μ\mu moves on a circular orbit of a nonrotating black hole of mass MM. Under the restrictions μ/M1\mu/M \ll 1 and v1v \ll 1, where vv is the orbital velocity, we consider the gravitational waves emitted by such a binary system. We calculate E˙\dot{E}, the rate at which the gravitational waves remove energy from the system. The total energy loss is given by E˙=E˙+E˙H\dot{E} = \dot{E}^\infty + \dot{E}^H, where E˙\dot{E}^\infty denotes that part of the gravitational-wave energy which is carried off to infinity, while E˙H\dot{E}^H denotes the part which is absorbed by the black hole. We show that the black-hole absorption is a small effect: E˙H/E˙v8\dot{E}^H/\dot{E} \simeq v^8. We also compare the wave generation formalism which derives from perturbation theory to the post-Newtonian formalism of Blanchet and Damour. Among other things we consider the corrections to the asymptotic gravitational-wave field which are due to wave-propagation (tail) effects.Comment: ReVTeX, 17 page

    On the Circular Orbit Approximation for Binary Compact Objects In General Relativity

    Full text link
    One often-used approximation in the study of binary compact objects (i.e., black holes and neutron stars) in general relativity is the instantaneously circular orbit assumption. This approximation has been used extensively, from the calculation of innermost circular orbits to the construction of initial data for numerical relativity calculations. While this assumption is inconsistent with generic general relativistic astrophysical inspiral phenomena where the dissipative effects of gravitational radiation cause the separation of the compact objects to decrease in time, it is usually argued that the timescale of this dissipation is much longer than the orbital timescale so that the approximation of circular orbits is valid. Here, we quantitatively analyze this approximation using a post-Newtonian approach that includes terms up to order ({Gm/(rc^2)})^{9/2} for non-spinning particles. By calculating the evolution of equal mass black hole / black hole binary systems starting with circular orbit configurations and comparing them to the more astrophysically relevant quasicircular solutions, we show that a minimum initial separation corresponding to at least 6 (3.5) orbits before plunge is required in order to bound the detection event loss rate in gravitational wave detectors to < 5% (20%). In addition, we show that the detection event loss rate is > 95% for a range of initial separations that include all modern calculations of the innermost circular orbit (ICO).Comment: 10 pages, 12 figures, revtex

    Measuring and understanding adherence in a home-based exercise intervention during chemotherapy for early breast cancer

    Get PDF
    Purpose: Ensuring and measuring adherence to prescribed exercise regimens are fundamental challenges in intervention studies to promote exercise in adults with cancer. This study reports exercise adherence in women who were asked to walk 150 min/week throughout chemotherapy treatment for early breast cancer. Participants were asked to wear a FitbitTM throughout their waking hours, and Fitbit steps were uploaded directly into study computers. Methods: Descriptive statistics are reported, and both unadjusted and multivariable linear regression models were used to assess associations between participant characteristics, breast cancer diagnosis, treatment, chemotherapy toxicities, and patient-reported symptoms with average Fitbit steps/week. Results: Of 127 women consented to the study, 100 had analyzable Fitbit data (79%); mean age was 48 and 31% were non-white. Mean walking steps were 3956 per day. Nineteen percent were fully adherent with the target of 6686 steps/day and an additional 24% were moderately adherent. In unadjusted analysis, baseline variables associated with fewer Fitbit steps were: non-white race (p = 0.012), high school education or less (p = 0.0005), higher body mass index (p = 0.0024), and never/almost never drinking alcohol (p = 0.0048). Physical activity variables associated with greater Fitbit steps were: pre-chemotherapy history of vigorous physical activity (p = 0.0091) and higher self-reported walking minutes/week (p < 0.001), and higher outcome expectations from exercise (p = 0.014). Higher baseline anxiety (p = 0.03) and higher number of chemotherapy-related symptoms rates “severe/very severe” (p = 0.012) were associated with fewer steps. In multivariable analysis, white race was associated with 12,146 greater Fitbit steps per week (p = 0.004), as was self-reported walking minutes prior to start of chemotherapy (p < 0.0001). Conclusions: Inexpensive commercial-grade activity trackers, with data uploaded directly into research computers, enable objective monitoring of home-based exercise interventions in adults diagnosed with cancer. Analysis of the association of walking steps with participant characteristics at baseline and toxicities during chemotherapy can identify reasons for low/non-adherence with prescribed exercise regimens

    Forced oscillations in a hydrodynamical accretion disk and QPOs

    Full text link
    This is the second of a series of papers aimed to look for an explanation on the generation of high frequency quasi-periodic oscillations (QPOs) in accretion disks around neutron star, black hole, and white dwarf binaries. The model is inspired by the general idea of a resonance mechanism in the accretion disk oscillations as was already pointed out by Abramowicz & Klu{\'z}niak (\cite{Abramowicz2001}). In a first paper (P\'etri \cite{Petri2005a}, paper I), we showed that a rotating misaligned magnetic field of a neutron star gives rise to some resonances close to the inner edge of the accretion disk. In this second paper, we suggest that this process does also exist for an asymmetry in the gravitational potential of the compact object. We prove that the same physics applies, at least in the linear stage of the response to the disturbance in the system. This kind of asymmetry is well suited for neutron stars or white dwarfs possessing an inhomogeneous interior allowing for a deviation from a perfectly spherically symmetric gravitational field. We show by a linear analysis that the disk initially in a cylindrically symmetric stationary state is subject to three kinds of resonances: a corotation resonance, a Lindblad resonance due to a driven force and a parametric sonance. The highest kHz QPOs are then interpreted as the orbital frequency of the disk at locations where the response to the resonances are maximal. It is also found that strong gravity is not required to excite the resonances.Comment: Accepte

    Gravitational Radiation Theory and Light Propagation

    Get PDF
    The paper gives an introduction to the gravitational radiation theory of isolated sources and to the propagation properties of light rays in radiative gravitational fields. It presents a theoretical study of the generation, propagation, back-reaction, and detection of gravitational waves from astrophysical sources. After reviewing the various quadrupole-moment laws for gravitational radiation in the Newtonian approximation, we show how to incorporate post-Newtonian corrections into the source multipole moments, the radiative multipole moments at infinity, and the back-reaction potentials. We further treat the light propagation in the linearized gravitational field outside a gravitational wave emitting source. The effects of time delay, bending of light, and moving source frequency shift are presented in terms of the gravitational lens potential. Time delay results are applied in the description of the procedure of the detection of gravitational waves

    The Physics of the B Factories

    Get PDF
    corecore