2,676 research outputs found

    Duplication of modules facilitates the evolution of functional specialization

    Get PDF
    The evolution of simulated robots with three different architectures is studied. We compared a non-modular feed forward network, a hardwired modular and a duplication-based modular motor control network. We conclude that both modular architectures outperform the non-modular architecture, both in terms of rate of adaptation as well as the level of adaptation achieved. The main difference between the hardwired and duplication-based modular architectures is that in the latter the modules reached a much higher degree of functional specialization of their motor control units with regard to high level behavioral functions. The hardwired architectures reach the same level of performance, but have a more distributed assignment of functional tasks to the motor control units. We conclude that the mechanism through which functional specialization is achieved is similar to the mechanism proposed for the evolution of duplicated genes. It is found that the duplication of multifunctional modules first leads to a change in the regulation of the module, leading to a differentiation of the functional context in which the module is used. Then the module adapts to the new functional context. After this second step the system is locked into a functionally specialized state. We suggest that functional specialization may be an evolutionary absorption state

    Aggregation of variables and system decomposition: Applications to fitness landscape analysis

    Get PDF
    In this paper we present general results on aggregation of variables, specifically as it applies to decomposable (partitionable) dynamical systems. We show that a particular class of transition matrices, namely, those satisfying an equitable partitioning property, are aggregable under appropriate decomposition operators. It is also shown that equitable partitions have a natural application to the description of mutation-selection matrices (fitness landscapes) when their fitness functions have certain symmetries concordant with the neighborhood relationships in the underlying configuration space. We propose that the aggregate variable descriptions of mutation-selection systems offer a potential formal definition of units of selection and evolution

    Simon-Ando decomposability and fitness landscapes

    Get PDF
    In this paper, we investigate fitness landscapes (under point mutation and recombination) from the standpoint of whether the induced evolutionary dynamics have a “fast-slow” time scale associated with the differences in relaxation time between local quasi-equilibria and the global equilibrium. This dynamical hevavior has been formally described in the econometrics literature in terms of the spectral properties of the appropriate operator matrices by Simon and Ando (Econometrica 29 (1961) 111), and we use the relations they derive to ask which fitness functions and mutation/recombination operators satisfy these properties. It turns out that quite a wide range of landscapes satisfy the condition (at least trivially) under point mutation given a sufficiently low mutation rate, while the property appears to be difficult to satisfy under genetic recombination. In spite of the fact that Simon-Ando decomposability can be realized over fairly wide range of parameters, it imposes a number of restriction on which landscape partitionings are possible. For these reasons, the Simon-Ando formalism does not appear to be applicable to other forms of decomposition and aggregation of variables that are important in evolutionary systems

    Genomic correlates of relationship QTL involved in fore-versus hind limb divergence in mice

    Get PDF
    Divergence of serially homologous elements of organisms is a common evolutionary pattern contributing to increased phenotypic complexity. Here, we study the genomic intervals affecting the variational independence of fore- and hind limb traits within an experimental mouse population. We use an advanced intercross of inbred mouse strains to map the loci associated with the degree of autonomy between fore- and hind limb long bone lengths (loci affecting the relationship between traits, relationship quantitative trait loci [rQTL]). These loci have been proposed to interact locally with the products of pleiotropic genes, thereby freeing the local trait from the variational constraint due to pleiotropic mutations. Using the known polymorphisms (single nucleotide polymorphisms [SNPs]) between the parental strains, we characterized and compared the genomic regions in which the rQTL, as well as their interaction partners (intQTL), reside. We find that these two classes of QTL intervals harbor different kinds of molecular variation. SNPs in rQTL intervals more frequently reside in limb-specific cis-regulatory regions than SNPs in intQTL intervals. The intQTL loci modified by the rQTL, in contrast, show the signature of protein-coding variation. This result is consistent with the widely accepted view that protein-coding mutations have broader pleiotropic effects than cis-regulatory polymorphisms. For both types of QTL intervals, the underlying candidate genes are enriched for genes involved in protein binding. This finding suggests that rQTL effects are caused by local interactions among the products of the causal genes harbored in rQTL and intQTL intervals. This is the first study to systematically document the population-level molecular variation underlying the evolution of character individuation

    Changing times in England: the influence on geography teachers’ professional practice

    Get PDF
    School geography in England has been characterised as a pendulum swinging between policies that emphasise curriculum and pedagogy alternately. In this paper, I illustrate the influence of these shifts on geography teacher's professional practice, by drawing on three “moments” from my experience as a student, teacher and teacher educator. Barnett's description of teacher professionalism as a continuous project of “being” illuminates how geography teachers can adapt to competing influences. It reflects teacher professionalism as an unfinished project, which is responsive, but not beholden, to shifting trends, and is informed by how teachers frame and enact policies. I argue that recognising these contextual factors is key to supporting geography teachers in “being” geography education professionals. As education becomes increasingly competitive on a global scale, individual governments are looking internationally for “solutions” to improve educational rankings. In this climate, the future of geography education will rest on how teachers react locally to international trends. Geography teacher educators can support this process by continuing to inform the field through meaningful geography education research, in particular in making the contextual factors of their research explicit. This can be supported through continued successful international collaboration in geography education research

    Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study

    Get PDF
    Background It is currently unknown whether ultra-processed foods (UPFs) consumption is associated with a higher incidence of multimorbidity. We examined the relationship of total and subgroup consumption of UPFs with the risk of multimorbidity defined as the co-occurrence of at least two chronic diseases in an individual among first cancer at any site, cardiovascular disease, and type 2 diabetes. Methods This was a prospective cohort study including 266,666 participants (60% women) free of cancer, cardiovascular disease, and type 2 diabetes at recruitment from seven European countries in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Foods and drinks consumed over the previous 12 months were assessed at baseline by food-frequency questionnaires and classified according to their degree of processing using Nova classification. We used multistate modelling based on Cox regression to estimate cause-specific hazard ratios (HR) and their 95% confidence intervals (CI) for associations of total and subgroups of UPFs with the risk of multimorbidity of cancer and cardiometabolic diseases. Findings After a median of 11.2 years of follow-up, 4461 participants (39% women) developed multimorbidity of cancer and cardiometabolic diseases. Higher UPF consumption (per 1 standard deviation increment, ∟260 g/day without alcoholic drinks) was associated with an increased risk of multimorbidity of cancer and cardiometabolic diseases (HR: 1.09, 95% CI: 1.05, 1.12). Among UPF subgroups, associations were most notable for animal-based products (HR: 1.09, 95% CI: 1.05, 1.12), and artificially and sugar-sweetened beverages (HR: 1.09, 95% CI: 1.06, 1.12). Other subgroups such as ultra-processed breads and cereals (HR: 0.97, 95% CI: 0.94, 1.00) or plant-based alternatives (HR: 0.97, 95% CI: 0.91, 1.02) were not associated with risk. Interpretation Our findings suggest that higher consumption of UPFs increases the risk of cancer and cardiometabolic multimorbidity. Funding Austrian Academy of Sciences, Fondation de France, Cancer Research UK, World Cancer Research Fund International, and the Institut National du Cancer
    • …
    corecore