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à Abstract

In this paper, we investigate fitness landscapes (under point mutation and recombination) from the

standpoint of whether the induced evolutionary dynamics have a "fast−slow " time scale associated with

the differences in relaxation time between local quasi−equilibria  and the global equilibrium. This

dynamical behavior has been formally described in the econometrics literature in terms of the spectral

properties of the appropriate operator matrices by Simon and Ando (1961), and we use the relations

they derive to ask which fitness functions and mutation/recombination operators satisfy these proper-

ties. It  turns out that quite a wide range of landscapes satisfy the condition (at least trivially)  under

point mutation given a sufficiently low mutation rate, while the property appears to be difficult  to

satisfy under genetic recombination. In spite of the fact that Simon−Ando  decomposability can be

realized over fairly wide range of parameters, it imposes a number of restrictions on which landscape

partitionings are possible. For these reasons, the Simon−Ando  formalism doesn’t appear to be applica-

ble to other forms of decomposition and aggregation of variables that are important in evolutionary

systems.

Keywords:  Fitness Landscapes, Aggregation of  Variables, Decomposability, Mutation, Selection,

Dynamical Systems
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à Introduction

Ever since Wright’s (1932) influential characterization of the evolutionary process as a popula-

tion−level  traversal of a genotype or phenotype "landscapes" where evolving populations are attracted

to high fitness "peaks" separated from maladaptive "valleys," the metaphor has dominated evolutionary

thinking at an intuitive level. However, relatively little has been done to develop a theory of fitness

landscape structures as they relate to induced evolutionary processes. This is in part due to the lack of

landscape models general enough to be compatible with empirical data. However, perhaps a more

fundamental deficiency has been the absence of a theory mapping landscape topology to evolutionary

dynamics.

Much of the work that has been done on landscape characterization has dealt with descriptions

of statistical features such as autocorrelation over a random walk (Weinberger 1990, Fontana et al

1991, Stadler 1996), or heuristic descriptions of landscape "ruggedness" (Kauffman 1993), measures of

neutrality (Ancel and Fontana 2000, Reidys and Stadler 2001) and topological descriptions of connectiv-

ity  (Gavrilets and Gravner 1997). These landscape characteristics were chosen with the intuition that

they should somehow correlate with evolutionary dynamics. For example, a "rugged" landscape can be

thought of as having more local attractors (or rather, quasi−equilibria  in a connected landscape) than a

"smooth" landscape, while connectivity should relate to the ability of the evolving population to move

between local peaks given potentially infinite time. However, most of these heuristic characterizations

did not make an explicit link to the dynamical system properties correlated with the given measure. 

In what follows, we investigate the possibility of characterizing fitness landscapes according to

whether the state description induced by a particular landscape (or, rather, its corresponding mutation−

selection  operator) is decomposable and aggregable, or at least are decomposable and aggregable to a

close approximation at the appropriate scale. We will  begin by briefly defining what we mean by

"decomposability" and "aggregability," while referring the reader to a more detailed treatment of these

subjects in Shpak et al (2003).

In the broadest sense, aggregability of a dynamical system means that there exist macrostate

variables (which are themselves functions of some subset of the microstate variables) which allow for a

dynamically sufficient description of the system with fewer state variables than in the original dynami-

cal system. The ability to collapse subsets of state variables into an aggregate variable on each equiva-

lence class reflects symmetries inherent in the selection and transmission processes specified by land-

scape topology and the mutation operators. From a purely computational point of view it is valuable to

identify such symmetries, because they render otherwise computationally expensive analyses tractable

by reduction of variables. In other words, from a practical standpoint, the advantage of a reduced state−

space  description are obvious: any reduction in the state space necessary for a dynamically sufficient

description substantially simplifies both numerical and analytical treatments of the process in question.

In addition to the obvious significance of aggregation of variables from the perspective of

computational complexity, the dynamical symmetries induced by a particular decomposable landscape

shed light on the properties of the evolutionary process. The fitness landscape symmetries that make

aggregation of variables possible may relate with hierarchy and modularity in the genotype−fitness

map or other organizational constraints.  Indeed, the general concept of aggregation has been widely

applied to a range of biological models and problems, from classical notions of modularity in organis-

mal design to modern notions of hierarchy in genetic architecture (Frenken et al 2000, Simon 1972 and

2000, unpublished).

System decomposability is often related to aggregation of variables but is in principle an inde-

pendent property. It simply means that there exist (usually) non−intersecting  subsets of variables which

interact among themselves in some way that distinguishes their interaction from any other subset of

variables. In other words, it implies the existence of self−contained  "modules" of state variables in a

dynamical system that are in some way independent or quasi−independent  of the other microstate

variables. Often these modules have associated aggregation rules that allow them to be characterized as

"emergent" macrostate variables, but this need not be the case (Shpak et al, 2003).

In more formal terms, consider a discrete dynamical system (what follows is trivially generaliz-

able to continuous systems) specified by a linear operator A, such that x(t+1)=Ax(t). For convenience,

we will  denote x(t) as x and x(t+1) as y. We define aggregativity to mean that given a dynamical sys-

tem with (x1 ...xn ) state variables, one can group subsets of the microstate variables into m<n mac-

rostates X1 = f1 (x1 ...xn )...Xm = fm (x1 ...xn ), where in the simplest scenario f is simply a linear combina-

tion of microstate values. These macrostates in turn must constitute a dynamically sufficient descrip-

tion, i.e. so that there exists an operator A
`

 such that X(t+1)=A
`

X(t). 

For a linear system specified by transition operator A, we require that there exists an aggrega-

tion operator Q such that there is an aggregate variable description Y=A
`

X, where Y=Qy and X=Qx. If

y and x are state vectors of length n, for the aggregation Q to be non−trivial, it must be an mxn matrix

(with m<n), and with A
`

 an mxm matrix. Such an aggregation of variables achieves a reduction of the

state space dimension necessary for a dynamically sufficient description. Q  is defined such that if

QIj >0, x j  is a member of the Ith aggregate class (the indices I,j refer to the element in the Ith row and

jth column of the matrix Q, the use of upper and lower−case  letters is simply to indicate that the non-

zero indices j are within the Ith subset).

It was shown by Shpak et al that whenever such an aggregation exists, the aggregate dynamics

operator A
`

 has the form
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H1.1L A
`

= QAQT  HQQTL-1

It was also proven that even for systems which are not exactly aggregable, (1.1) gives the best approxi-

mation for the aggregate dynamics of X given the aggregation rule Q.

In the special case where the subsets defining the aggregate classes are mutually exclusive, the

dynamical system is said to be decomposable as well as aggregable. The set of such subclasses is

refered to as a partitioning, and the aggregation of variables on the partition have a Q matrix structure

such that if  QIj >0 then QKj =0 for all other K¹I. This means that the dynamical system in question is in

some way "modular," i.e. variables contributing to a given macrostate variable do not contribute to

others. Together, these rules specify an aggregation of variables which is also a decomposition. As

discussed in the first section of Shpak et al (2003), decomposability and aggregativity are in principle

independent of one another.

Contra the idealized representations of aggregation and decomposability presented above, most

natural systems have a certain amount of communication (at least indirect) between variables across

partitions. Indeed, when complete decomposability holds, the system is rather uninteresting in that it

consists of non−interacting, self−contained  subcomponents. One would expect a much more common

scenario to be one where a dynamical system is said to be nearly decomposable if  the aggregation via

Q is dynamically sufficient as an approximation within some arbitrarily small error parameter Ε<<1,

such that the linear operator A can be written as A=A* +ΕC, where A*  is completely decomposable and

C is an arbitrary n dimensional square matrix.

One such class of nearly decomposable dynamical systems occurs when the macrostate vari-

ables are specified as subsets which are nearly independent from the remaining state variables and

exhibit local quasi−equilibria, at least over a certain time scale. We propose that such models may be of

particular interest to population genetics from the standpoint of peak transitions in evolution. Such

systems have a dynamic that is characterized by short−term  clustering about local equilibria and long−

term  transitions towards the global equilibrium. It is hypothesized that the subsets of variables which

exhibit local quasi−equilibria  correspond to local fitness optima and their mutational neighbors (with

the long time scale equilibrium being the mutation−selection  balance over the entire landscape), and

that such fitness landscapes induce "fast−slow" (e.g. Guckenheimer and Holmes 1981, Strogatz 1994)

behavior.

Examples of nearly decomposable and aggregable natural systems include many well−known

models in thermodynamics and statistical physics, which use macrostate variables such as temperature,

pressure, and entropy as state variables. This permits a dynamically sufficient descriptions of particle

ensembles which would be impossible to describe by tracking the microstates of the innumerable gas

particles. In biology, aggregation of microstates into macrostates is (at least implicitly)  the foundation

for quantitative genetics, where the phenotype macrostates serve as (often approximate) state variables,

and the corresponding microstates are the contribution to phenotype or mutational variance made by

each individual locus (e.g. Bulmer 1970, Turelli and Barton 1994).

The purpose of this study is to demonstrate the applicability of aggregation methods in describ-

ing mutation−selection  dynamics on model fitness landscapes, particularly the use of decomposability

criteria to identify fitness landscapes which induce fast−slow  evolutionary dynamics. It is hypothesized

that those landscapes which are characterized by local quasi−equilibria  are decomposable and aggrega-

ble into subsets of genotypes defining each quasiequilibrium. We begin with a general analysis of

decomposability of linear dynamical systems, because of its simplicity and the fact that mutation−

selection  operators for haploid genotypes can be readily linearized.
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à Simon−Ando   Decomposability  and Fast−Slow  Dynamics

Aggregativity and decomposability in what we will  refer to below as "Simon−Ando " systems is

only approximate, and as such the aggregate representations are only accurate over durations deter-

mined by the system dynamics (insofar as the near−aggregativity  arises due to a time scale decoupling

between strong within−partition class  dynamics and weak cross−class  dynamics). We begin with a

summary of Simon and Ando’s results on fast−slow  dynamical behavior as far as is necessary for

understanding their relevance to what follows, while referring the reader to their papers and to Courtois

(1977) for a more detailed discussion.

Consider a system of linear difference equations x(t+1)=Ax(t)  where A  is an nxn transition

matrix. Suppose that A can be rewritten as
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(3.0) A= A* +ΕC

with A*  is a block diagonal matrix of the form:i
k
jjjjjjjjjjjjjjjj
A1

* 0 0 0 0

0 ¸ 0 0 0
0 0 AI

* 0 0

0 0 0 ¸ 0
0 0 0 0 AM

*

y
{
zzzzzzzzzzzzzzzz

Each element AI
*  is a submatrix of dimension nI  (i.e. the number of elements in the partition

class CI ) such that n=Úi=1
k nI , while the corresponding partitions of the state vector x*  on which the

submatrices operate are denoted as:

x* (t) = { xi
* (t)}  = {[ xi1

* (t)],...,[xiI
* (t)],...,[xiM

* (t)]}

where xiI
* (t) is the subset of components of { xi

* (t)}  where the indices given by xiI
* (t)=xi (t) for xi ÎCI ,

with the lowest valued index with the partition being  i=ÚJ=1
I-1 nJ + j.  In other words, the state vector

xi
* (t) is divided into I=1...M subvectors of length nI  corresponding to the dimensions of AI

* . The values

of AJ
*  for J¹I have no effect on the behavior of xi

* Î CI . In this scenario, the system’s behavior is fully

specified  by:

(3.1)  xi
* (t) =  AI

* t xi
* (0) 

Due to the fact that there are non−communicating  blocks in A* , the dynamical system deter-

mined by this matrix satisfies the requirements of complete partitionability: namely, that the system

dynamics can be fully  specified by applying transformation rules to each partition independent of the

other.

In the system specified by A=A* +ΕC, however, there is weak communication (scaling with Ε

<<1) across states, because C has nonzero off−diagonal  (defined relative to A* ) entries. The existence

of strong communication (approximated by the transition rates of AI
* ) for variables within partitions I,I

and correspondingly weaker communication for variables across classes I and J (I¹J) leads to a fast−

slow  dynamic. Furthermore, as will  be argued below, it  allows one to (approximately) construct an

aggregate dynamical system where the macrostate variables XI  are functions of the elements of  the Ith

strongly−communicating  partition class of vertices [xiI (t)].

At an intuitive level, approximate aggregation is possible because the distribution of variables

[xiI (t)] corresponding to partition class CI  tends towards a quasi−equilibrium  very rapidly compared to

the time required for the system as a whole to reach the global equilibrium. Consequently, for some

intermediate time period, the subvectors [xiI
* (t)]  for each partition class will  be in quasi−equilibrium

determined by the corresponding transition operator AI
* ,  while an aggregate transition matrix of

between−class  transition rates can adequately approximate the transition dynamics between classes.

To see that this is indeed the case, consider the eigenvalues of each submatrix AI
* . Assuming

that they are distinct, the nI  eigenvalues can be written in descending order so that Λ1I

*  > Λ2I

*  > ...>

ΛnI I

* . Furthermore, the constituent blocks AI
*  of matrix A*  can be permuted so that the leading eigenval-

ues of each submatrix are arranged in the order Λ11
*  > Λ1I

*  >...> Λ1M

*  for the m submatrices (where ΛiI
*

denotes the ith eigenvalue of the Ith block).

In order to describe the decoupling of dynamics between A and the A*  approximation, define a

value ∆*  such that: 
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mined by this matrix satisfies the requirements of complete partitionability: namely, that the system

dynamics can be fully  specified by applying transformation rules to each partition independent of the

other.

In the system specified by A=A* +ΕC, however, there is weak communication (scaling with Ε

<<1) across states, because C has nonzero off−diagonal  (defined relative to A* ) entries. The existence

of strong communication (approximated by the transition rates of AI
* ) for variables within partitions I,I

and correspondingly weaker communication for variables across classes I and J (I¹J) leads to a fast−

slow  dynamic. Furthermore, as will  be argued below, it  allows one to (approximately) construct an

aggregate dynamical system where the macrostate variables XI  are functions of the elements of  the Ith

strongly−communicating  partition class of vertices [xiI (t)].

At an intuitive level, approximate aggregation is possible because the distribution of variables

[xiI (t)] corresponding to partition class CI  tends towards a quasi−equilibrium  very rapidly compared to

the time required for the system as a whole to reach the global equilibrium. Consequently, for some

intermediate time period, the subvectors [xiI
* (t)]  for each partition class will  be in quasi−equilibrium

determined by the corresponding transition operator AI
* ,  while an aggregate transition matrix of

between−class  transition rates can adequately approximate the transition dynamics between classes.

To see that this is indeed the case, consider the eigenvalues of each submatrix AI
* . Assuming

that they are distinct, the nI  eigenvalues can be written in descending order so that Λ1I

*  > Λ2I

*  > ...>

ΛnI I

* . Furthermore, the constituent blocks AI
*  of matrix A*  can be permuted so that the leading eigenval-

ues of each submatrix are arranged in the order Λ11
*  > Λ1I

*  >...> Λ1M

*  for the m submatrices (where ΛiI
*

denotes the ith eigenvalue of the Ith block).

In order to describe the decoupling of dynamics between A and the A*  approximation, define a

value ∆*  such that: 

(3.2a) mini¹ j  |ΛiI
*  − Λ jI

* | < ∆*

The difference in eigenvalue magnitudes in the components of A*  are next compared to those

of A, so that for any positive real number ∆ < ∆*  there is a sufficiently small Ε>0 (as in eq. 2.0) such

that for all iÎCI

(3.2b)  |ΛiI  − ΛiI
* | < ∆

The differences in magnitude between ∆ and ∆*  determine the characteristic time scale differ-

ences between the fast and slow dynamics. The fast system dynamics of xiI (t) will  be driven by the

eigensystem of the Ith subcomponent, hence being nearly identical to the behavior of xiI
* . In the short

run (for a time span which scales exponentially with the magnitude of ∆), the system behaves as a

completely decomposable system specified by A* .  Given sufficient time, the subsystems settle into

quasiequilibria given by the leading eigenvalue Λ1I  and the associated eigenvector of each submatrix,

with the remaining  (up to) nI −1  eigendirections being residual. The system x(t) as a whole consists of

M quasiequilibria determined by their eigenvectors Ν11 ...Ν1M .  

The system then becomes driven primirily by communication across quasi−equilibrium  subcom-

ponents, tending ultimately towards the eigendirection corresponding to the leading eigenvalue Λ1  of

A. This can be seen by writing a spectral decomposition of the transition matrix A and its powers, i.e.
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ponents, tending ultimately towards the eigendirection corresponding to the leading eigenvalue Λ1  of

A. This can be seen by writing a spectral decomposition of the transition matrix A and its powers, i.e.

H3.3L At = Λ11
t  Z11 + â

I=2

m

Λ1I
t  Z1I + â

I=1

m â
i=2

nI

ΛiI
t  ZiI

Where Z  is the matrix of the product of left and right eigenvectors of A, i.e. Z=vv�  for Λv=Av and Λ

v� =v� A, given an appropriate choice of normalization constants.  Z satisfies the relation AZ=ZL (with L

a diagonal matrix of A’s eigenvalues ordered by descending absolute value).  

The corresponding spectral expansion of A* t  (the completely aggregable approximation to At )

is

H3.3 bL A*t = â
I=1

m

Λ1I
*t  Z1I

* + â
I=1

m â
i=2

n HIL
ΛiI

*t  ZiI
*

Where Λ* , ZI
*  are the eigenvalues and eigenvector products of A* . From the properties of near−decom-

posability, ΛiJ
* �ΛiJ  and Z*

iJ �ZiJ  if  in (3.0) Ε�0 (Simon and Ando 1961, pgs. 118−21). In the

special case of stochastic matrix A and A*  (with every submatrix of the latter also stochastic), we also

have the condition  Λ11 =Λ*
11 =Λ*

1J =1.

For the above spectral decomposition, the jth component of the state vector x jJ (t)=At x jJ (0) can

be written as

H3.4L xjJ  HtL = â
i=1

n

Zij  Λi
t  yi  H0L

where y(t)=Z-1 x(t). By expanding and rearranging terms, is
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H3.4 aL xjJ  HtL =

Λ11
t  Z11  jJ  y11  H0L + Λ1J

t  Z1J  jJ  y11  H0L + â
I¹J,I=2

m

Λ1I
t  Z1I  jJ  y1I  H0L +

â
iJ =2

nJ

ΛiJ
t  ZiJ  jJ  yiJ  H0L + â

I¹j,I=1

m â
iI=2

nI

ΛiI
t  ZiI  jJ  yiI  H0L

In order to satisfy the properties of near decomposability, ZiI  jJ  must be orders of magnitude

smaller than eigenvector components ZiI  jI  due to the significantly stronger within vs. between compo-

nent couplings. Similarly, the completely aggregable approximation contains no cross−component

terms (I,J) because the block−diagonal  matrix has no cross−term  communication. From the fact that

Z*
iI  jJ = 0, we write:

H3.4 bL x*
jJ  HtL = Λ1J

*t  Z*
1J  jJ  y11  H0L + â

iJ =2

nJ

ΛiJ
*t  Z*

iJ  jJ  yiJ  H0L
The short term behavior induced by At  (2.3) can be broken into intervals T1 <T2 <T3  such that

in the first two intervals (2.3b, 2.4b) are good approximations. That such a time−scaling  exists follows

from the Simon−Ando  theorems, (Thms. 4.1 and 4.2 in Simon and Ando 1961, which we repeat here

without proof):

Theorem 2.1:

Given Z and Z*  defined as in (3.3), for an arbitrarily small scalar quantity Ξ>0, there exists a suffi-

ciently small Ε<ΕΞ  (as in 2.0) such that

maxk,l È Zkl  HiIL - Zkl
*  HiIL È < Ξ

for 2 £ i £ n HIL, 1 £ I £ N, 1 £ k, l £ n

Theorem (2.1) allows one to precisely bound the difference between the eigenvector compo-

nents of the completely and nearly aggregable systems, and to combine this information with the rank-

ing of eigenvalue magnitude in making predictions about the qualitative short−term  versus long−term

behavior of the system. Defining  Ξkl =Zkl  HiIL - Zkl
*  HiIL,  following Simon and Ando we write

H3.5L uij =
Ξij���������
Ξ

and
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H3.6L Z = Z* + ΞU

This notation (together with the fact that for cross−component  terms IJ the components ZIJ =0) allows

us to rewrite the five terms of (2.4a) asH3.7 aL xjJ  HtL =

ΞΛ11
t  u11  jJ  y11  H0L + Λ1J

t  Z1J  jJ  y11  H0L + Ξ â
I¹J,I=2

m

Λ1I
t  u1I  jJ  y1I  H0L +

â
iJ =2

nJ

ΛiJ
t  ZiJ  jJ  yiJ  H0L + Ξ â

I¹j,I=1

m

 â
iI=2

nI

ΛiI
t  ZiI  jJ  yiI  H0L

which we rewrite using the shorthand of Simon and Ando’s equation (4.21), 

H3.7 bL xjJ  HtL = ΞSj
H1L + Sj

H2L + ΞSj
H3L + Sj

H4L + ΞSj
H5L

where the S terms are shorthand for the each of the respective terms in (3.7a).

Note that the first term (the leading eigendirection with corresponding leading eigenvalue Λ11 )

scales as Ξ<<1 because it  involves I,J cross−component  interaction. Consistent with a qualitative

account of system dynamics, the short term behavior of  xjJ  HtL  is largely dominated by SH2L  and SH4L
(the only terms which appear in the completely decoupled system described by (2.4b)). For larger

values of t, however, eventually SH1L  comes to dominate as Λ1J
t << Λ11

t  (and other terms) as t®¥ (and

the global equilibrium is attained). The same applies for determining the time scale at which quasi−

equilibria  are attained within each Ith subcomponent (SH2L  vs. SH4L ).

We can state this more precisely by delimiting time intervals over which some subsets of terms

in (2.7) dominates over the others. This is made explicit in Theorem (4.2) in Simon and Ando,

Theorem 2.2a: (Within−Component  Quasi−Equilibria)

Because Λ1J >Λ jJ  for j³2, there exists a T0  such that for t>To

H3.8L Sj
H4L

�����������
Sj

H2L < Η0

While for t>T0  and some real number bound Η, since from theorem 2.1 it follows that there exists a Ξ

for Ε so that for T0 <t<T1
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H3.9L ΞHSjH1L + Sj
H3L + Sj

H5LL
�������������������������������������������������

Sj
H2L + Sj

H4L < Η1

Theorem 2.2a means that for a sufficiently small elapsed time, the dynamics of x(t) is domi-

nated by within−component  interactions. The first inequality (3.8) describes the short−term  within−

component  behavior before each partition class approaches its local quasiequilibrium. When S2  domi-

nates, the component is described as being in quasi−equilibrium. The second inequality simply states

that for time less than T1 , the cross component terms of order Ξ are negligible.

The next set of inequalities describe the behavior of cross−component  (I,J) interactions. The

first establishes a time limit at which cross−component  interactions first become significant, the second

the waiting time until the (global) leading eigendirection dominates:

Theorem 2.2b: (Cross−Component  Equilibrium)

Given an Ε which gives the bounds in Theorem 2.2a, given a bound Η2  there exist time  T2 >T1  such

that for T2 <t,

H3.10L Sj
H4L + ΞSj

H5L
���������������������������������������������
ΞSj

H1L + Sj
H2L + ΞSj

H3L < Η2

for some value Η3 , there exists a number T3 >T2  so that for t>T3

H3.11L Sj
H2L + ΞSj

H3L + Sj
H4L + ΞSj

H5L
������������������������������������������������������������

ΞSj
H1L < Η3

The inequality (3.10) states that beyond time T2 , the cross−component  terms start to dominate

over the within−component terms, while (3.11) suggests that given sufficient time t>>T3 , the leaning

eigendirection (the direction of the global equilibrium) dominates all other terms.

The inequalities in Theorem 2 divide the fast−slow  dynamics of x(t) into four stages. Consider

an initial state vector x(0), in particularly the Ith component of the probability distribution xI (0).

Fort the entire time interval t<T1 , the behavior of xI (t) is closely approximated as x*
I (t), i.e. by

the equations (3.4b). In the time interval 0<t<T0 , the distribution xI (t) is determined by the various

eigendirections associated with AI , while during the time interval T0 <t<T1 , the leading eigenvector of

AI  dominates, and xI (t) is said to be in a state of local quasi−equilibrium.

When T1 <t<T2 , cross component interactions with partition classes J¹I  become significant.

Since prior to time T2  the distribution xI (t) is at a quasi−equilibrium  distribution closely approximated

by the eigenvector Z1I  (and the same is the true for all subcomponents J), the dynamics during the time

intervals following T1  can be approximated by assuming that the Ith component is in the equilibrium

associated with A*
I , weighted by what initial proportion of the distribution was in the Ith component.

This is the property that allows for aggregation of variables approximations to be reasonably

accurate representations for the dynamics of x(t). By treating the within−component  distributions at

quasiequilibrium as essentially static over the short term, each subcomponent distribution xI  can be

treated as an aggregate variable XI , and rather than tracking the interactions of individual elements i,j

of the Ith and Jth component, the dynamics for T1 <t<T2  can be described by an aggregate matrix A
`

that describes net cross−component  communication (as described in the following section).

During the time interval T1 <t<T2 , the cross−component  eigenvectors begin to dominate over

the within−component  eigenvectors, while for T2 <t, the leading eigenvector of A dominates the distribu-

tion as it tends towards its global stable equilibrium (assuming that such exists). True fast−slow  behav-

ior occurs when T2  is substantially (perhaps orders of magnitude) larger than T0  by allowing a time

scale decoupling between local quasiequilibria and global equilibration.
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During the time interval T1 <t<T2 , the cross−component  eigenvectors begin to dominate over

the within−component  eigenvectors, while for T2 <t, the leading eigenvector of A dominates the distribu-

tion as it tends towards its global stable equilibrium (assuming that such exists). True fast−slow  behav-

ior occurs when T2  is substantially (perhaps orders of magnitude) larger than T0  by allowing a time

scale decoupling between local quasiequilibria and global equilibration.

� Aggregation of Variables and Decomposition in Simon−Ando  Systems

In a nearly decomposable Simon−Ando  system at time T1 <t<T2 , the distribution in each compo-

nent xI (t) is in quasi−equilibrium  with nearly stationary within−partition  class dynamics. Since for

larger values of t cross−component  (I,J) terms begin to dominate the system dynamics, the quasi−

equilibrium  distributions can be treated as macrostate variables with a time evolution determined by

the sum total of transition rates across classes.

Given a transition matrix A which induces Simon−Ando  dynamics, we construct a description

of transition between macrostates (i.e. exchange rate between the K diagonal subcomponents in A* )

by summing the indices Aij  across classes  iΕI  and jΕJ. Simon and Ando (1961) and Courtois (1977)

derive an aggregate dynamics operator A
`

 for a stochastic matrix A  (their results apply readily to non−

stochastic  operators, apart from the leading block−eigenvalues  not being equal to one) by arguing that

in time interval T1 <t<T2 , the normalized Ith component of xI (t) is approximately equal to the leading

eigenvector (stationary distribution) of AI
* ,
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H3.12L Ν*
iI  H1IL >

xiI��������������������ÚiΕI xiI

We next construct a transition matrix which describes the dynamics of the transition probability

between states J and I.  In terms of conditional probabilities (and by abuse of notation where X=J

denotes a transition to the Jth state), we have

P HXt+1 = I È Xt = JL =
P HXt+1 = I, Xt = JL
������������������������������������������������

P HXt = JL
with P HXt = JL=ÚjΕJ xjJ  and P HXt+1 = I, Xt = JL is the probability of leaving any state iΕI

entering any state jΕJ, which is the sum of Aij  transition probabilities weighted by the probability of

being in the ith state, i.e. ÚiΕI  ÚjΕJ  xjJ  Aij . Therefore,

H3.13L P HXt+1 = I È Xt = JL =
1

��������������������ÚjΕJ xjJ
 â
iΕI

 â
jΕJ

 Aij  xjJ

with identical results (apart from a normalization constant) if  one interprets the coefficients of A as rate

terms rather than transition probabilities. From (2.9), we can approximate this expression as

H3.13 bL P HXt+1 = I È Xt = JL > â
iΕI

 â
jΕJ

 Aij  Ν*
jJ  H1JL

For the completely decomposable system A* , by (3.13b) the transition rates are simply the elements of

a diagonal matrix of leading right eigenvalues for each block, PII =Λ(1I ), PIJ =0 for I¹J, with the former

coefficient equal to unity for block−stochastic  matrices.

This construction of aggregate dynamics implicitly assumes an aggregation operator Q which is

a matrix of characteristic vectors, as in this formulation XI =Qx=ÚiΕI xiI . However, a derivation of

AIJ
`

 using the matrix of characteristic vectors according to (1.2) gives us something of the form (3.5),

which is not equal to (3.13).

Alternatively, one could chose Q  to be the matrix with rows qI = Ν*
I  H1IL,the leading

eigenvectors of the block−diagonal  submatrices of A*  to determine whether this choice of aggregation

operator is consistent with (1.1). In this case, XI  would have to be normalized to produce a distribution

as ÚiΕI Ν*
I  H1IL xiI is not necessarily normal given x, ΝI

*  normal. Furthermore, the resulting deriva-

tion of A
`
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A
`
IJ = â

iΕI

 â
jΕJ

 Ν*
iI  Aij  

Ν*
jJ�������������������������ÚkΕJ Ν*

kJ
2

is only equivalent to (3.13) in the special case where each block submatrix of A*  has as its leading

eigenvector a uniform stationary distribution.

This suggests that the standard expression (3.13) for the aggregate transition matrix in Simon−

Ando  systems does not generally satisfy the mean−square  minimum of Theorem 1.1, nor is the A
`

 used

in Simon−Ando  systems consistent with any choice of aggregation operators given (1.1). As discussed

above, this does not mean that the expression for A
`

 consistent with (1.1) should be preferred to a differ-

ent aggregate matrix (3.10), as Theorem 1.1 only offers a heuristic for the construction of A
`

 rather than

a rigorous statement about the best approximation for aggregate dynamics. In fact, much of the numeri-

cal work related to Simon−Ando  systems (Courtois 1977, Meyer 1989, Kafeety et al 1996, Deuflhard

et al 2000)  suggests that for strong time−decoupled  systems with a large separation T2 −T1 , the aggrega-

tion approximation for the dynamics of X is quite robust.

One of the differences between (3.13) and (1.1) is that the latter gives the least−square  mini-

mum estimate of ||QAx−AQx|| for x(t) over all times t, while (3.13) should give the best estimates for

X=Qx for time intervals t>T1 . Some of our numerical results in the sections below suggest that for

certain parameter landscapes (presumably, those where Simon−Ando  decomposability might be a poor

approximation), (1.1) gives reasonable estimates of aggregate dynamics where (3.13) fails. Conversely,

(3.13) gives good estimates of the dynamics of Qx and the stationary distributions of the transition

operator A in cases (presumably those which exhibit Simon−Ando  dynamics) where (1.1) gives com-

pletely misleading estimates.

The relationships above suggest the time scales over which a Simon−Ando  system is (to a close

approximation) aggregable and decomposable, as the two properties are not necessarily congruent.

During the time interval t<T0 , system dynamics are dominated by within−partition  class processes, and

thus the system dynamics can be described to a close approximation in terms of the within−partition

class dynamics of xI  acted on by their respective AI
* .

For the time interval T0 <t<T1 , because the within−component  dynamics approximated by A*

still  dominate, the system remains decomposable. However, the distributions within each partition are

closely approximated by the eigenvectors Ν1I

* , hence in this interval the system is aggregable. In con-

trast, over the time interval t<T0  the dynamical system was decomposable but not aggregable.

For T2 <t, cross−partition  class communication becomes dynamically significant, thus A*  is no

longer a good approximation for the system as a whole. The exchange rates across partitions have to be

weighted by their quasistationary within−component  distributions, so that the dynamical system in this

time interval remains nearly aggregable in spite of the breakdown of decomposability.

The different behaviors over the defined time intervals illustrate the fact that for Simon−Ando

systems where aggregation and decomposition are only approximate and time−dependent, the two

properties are actually decoupled from one another. This is in contrast to the situation one encounters in

dynamical operators that can be aggregated according to exact equitable partitions (Stadler and Tin-

hofer 1999, Shpak et al 2003). Those systems are exactly decomposable and aggregable over all time

scales.
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à Mutation−Selection   and Fitness  Landscapes

A fitness landscape (V,Ξ,f) consists of a vertex set of genotypes V, a transmission rule Ξ that

defines neighborhood relationship and/or a distance metric between vertices (genotypes) i,j, and a real−

valued  function f:V®R which assigns a fitness value to each genotype (Weinberger 1990, Jones 1992,

Culberson 1992, Stadler 1994). In genetic systems, the relevant transmission rules are those that assign

transition probabilities (edge weights) Tij  between genotypes i  and j  for mutation and recombination

processes. We will  first treat the simplest case, the fitness landscape specified by a mutation−selection

process under single point mutation.

Consider a haploid asexual population, with k possible genotypic states. These can be inter-

preted as either k alleles at a single locus, or alternatively, k alternative multilocus genotypes. The state

vector x(t) describes frequencies of ith genotype xi (t), where Úi=1
k xi  = 1. To each genotype one assigns

fitness value wi , and define the mean population fitness as W
���

=Úi=1
k xi  wi . 

For the sake of simplicity, we assume that reproduction, mutation, and selection occur in non−

overlapping  generations. The probability that a j  individual has an i  offspring is given by the per−

generation mutation rate Μij . This lets us define a row−stochastic  mutation matrix M  with entries:
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H4.0L Mii = 1 - â
i=1

N

Μji; Mij = Μij for i ¹ j

Iteration of x(t) across a single generation is defined by an expression of the form:

H5.1L xi  Ht + 1L = xi  HtL 
wi�������
W�

+
1
�����
W�

 â
j=1

k HΜij  wj  xj - Μji  wi  xiL
(see Crow and Kimura 1970, Ewens 1979, Burger 1998, Burger 2001, etc.). 

The mutation−selection  dynamics can be fully specified in the form of a matrix A operating on

x, with H5.2L Aij = Μij  wj  if i ¹ j

Aii =
ikjjjjj1 - â

l=1

k

Μil

y{zzzzz wi

The mutation−selection  matrix A=WM , where M  is the mutation matrix (5.0) and W  is a

diagonal matrix of genotype fitness values Wii =w, Wij =0.

By definition W
���

=Úi=1
k  HAxHtLLi , thus one can write (5.2) as xi (t+1) = 1�������

W
���� Axi (t). In its general

form, one can describe the dynamics as:

H5.3L x HtL = At  x H0L � â
i=1

k

 HAt  xH0LLi

The same equations will  describe evolution of a diploid population, if  one defines wi  as a

marginal fitness of genotype i, i.e. wi =Ú j=1
k wij x j  and W

����
= Úij=1

k wij xi x j  = Úi=1
k xi  wi .

It can be seen that eq. (5.3) is nonlinear due to the occurrence of terms containing xi  in W
���

.  The

characterization of a number of dynamical system properties is more straightforward if  the equations

can be linearized and expressed in matrix form. The decomposability criteria outlined in the first sec-

tion only holds for linear systems. 

A linearization of the coupled macromolecule synthesis models of Eugene (1971) by Jones et al

(1976) and in Thompson and MacBride (1974). These are formally equivalent to the Crow−Kimura

mutation−selection  models, thus the treatment here is a transformation which is equivalent to that of

Jones et al. Consider the transformed variable:

SimonAndoEdit.nb 17



H5.4L x HtL = y  HtL expA-à
o

t
1
�����
W�

 ât’E
with W� = â

i=1

k

xiHt’L wi

Substituting (5.4) into (5.1b) we obtain a linear difference equation. Note that this can be written in

matrix form similar to (5.2) but without the nonlinear normalization term W
���

. This linearization is only

valid for haploid genotypes (Thompson and MacBride 1974) because the diploid to haploid (gametic)

transmission process is quadratic.

The linearization of the mutation−selection  equations essentially changes the description of

relative genotype frequencies to one of absolute frequencies (Baake et al 1997, Hermisson et al 2001)

in  an exponentially growing population rather than relative frequencies and requires the use of

(absolute) Malthusian rather than Wrightean fitness parameters. One can transform back to the Wright-

ean relative frequency and fitness description with no information loss (by normalizing the absolute

frequency vector), and the mutation−selection  equations for haploids can be treated as a linear system

to which the above definitions of decomposability are applicable.

In an absolute−frequencies  based representation, the mutation−selection  process can be fully

specified as A=WM , i.e. as the product of a diagonal matrix of genotype fitness values and a stochastic

mutation matrix (this is where the discussions in previous sections on the conservation of stochasticity

in A
`

 becomes relevant). Furthermore, when absolute frequencies are used and the nonlinear W
���

 term is

removed, the linear operator A in (5.2) gives us the state equation for gene frequency change from one

generation to the next.

The goal in constructing an aggregation−based  description of mutation−selection  processes is,

given (5.1), to be able to construct either as an exact or approximate description

H5.5L XI  Ht + 1L = XI  HtL WI + â
J=1

k

 MIJ  WJ  XJ - MJI  WI  XI = HA` X HtLLI
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where XI  is the aggregate frequency of the Ith class of genotypes, MIJ  is some measure of net mutation

rate from the Ith to the Jth class (usually as some weighted sum of  cross−term  mutation ratesÚiΕI,jΕJ cij  Μij , and WI  is some aggregate fitness value on the Ith aggregate class, i.e. WI =f(xI1 ...xInI
)

where xIi ΕCI .
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� Landscapes on Hamming Graphs and Simon−Ando  Decomposability

We now turn our attention to the question of whether Simon−Ando  decomposability is applica-

ble to a wide class of fitness landscapes. As stated in the introduction, one’s intuition about landscape

topography suggests that Simon−Ando  like behavior might be fairly generic in multi−peaked  land-

scapes where the peaks and surrounding high fitness genotypes are separated by broad, low fitness

"valleys." We hypothesized that genotype frequency distributions would reach quasi−equilibria  in the

neighborhoods of local optima in the short run while slowly moving across the valleys towards the

global mutation−selection  equilibrium over a longer time scale.

The qualitative behavior and some of the mathematical structure associated with Simon−Ando

dynamics has been observed in a variety of evolutionary models. The "epochal evolution" of the

"Royal Road Genetic Algorithm" (van Nimwegen et al 1997) exhibits local quasi−steady  states associ-

ated with the fixation of a subset of loci with a certain fitness effect, punctuated by stepwise transitions

between these steady states in attaining the global optimum. Furthermore, the block−diagonal  structure

of fitness landscapes and its associated eigenstructure has been used by Schuster and Swetina (1988)

and Wilke (2001a,b) to derive equilibrium distributions and determine global optima by identifying

block components with the largest leading eigenvalues.

In asking how common Simon−Ando  decomposability may be for generic mutation−selection

systems, we work with a Hamming graph configuration space appropriate to the analysis of n−locus,

two allele system where only point mutations are allowed in each generation. This representation can

be generalized to multi−allelic  systems and to models with a small but nonzero probability of multiple

mutations per iteration (for example, a mutation matrix with coefficients determined by a Poisson or

exponential probability of k mutations in each generation).

Recall that Simon−Ando  aggregation and decomposability requires that the vertex set V be

completely partitionable into C={C1 ...Cm }  such that every vertex x is an element of some class CI . To

be Simon−Ando  decomposable, the partition classes are chosen such that intra−partition communica-

tion is orders of magnitude stronger than interpartition communication. Applying the Simon−Ando

aggregate description (3.13) to the mutation−selection  equations (5.1 and 5.5), we have
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A
`
IJ = â

iΕI

 â
jΕJ

 Aij  Ν*
jJ  H1JL = â

iΕI

 â
jΕJ

 Mij  wj  Ν*
jJ  H1JL

XI  Ht + 1L = XI  HtL WI + â
J=1

k

 MIJ  WJ  XJ - MJI  WI  XI = A
`

 XI  HtL
where the aggregate variables and parameters are XI =ÚiΕCI

xi ,  WI =ÚiΕCI
wi  Ν*

iI  H1IL,  and

MIJ =ÚiΕI  ÚjΕJ  Mij . Using these parameters, it can be seen that ÚI  A
`
IJ = WI .

It follows from the definitions of A
`

 and the condition for Simon−Ando  (3.0) that for all classes

J we obtain the following set of inequalities (noting that WJ £1, with the assumption that Ε<< 1�����2 )H6.0L
A
`
JJ = WJ - â

I¹J

 A
`
IJ >> WJ  H1 - ΕL�

A
`
JJ >> â

I¹J

 A
`
IJ

Rather than making this comparison for every class J, it  is instructive to look at the limiting

cases, i.e. the set with the highest cross−class  communication rate and the one with the lowest within−

class  communication rate (using the indices 1 and 2 to denote these classes, respectively, and again

applying the condition Ε<< 1�����2 ):H6.1 aL
A
`
11 >> W1  H1 - ΕL�

W2 - â
I¹2

 A
`
I2 >> W2  H1 - ΕL�

A
`
11���������
W1

> H1 - ΕL >> Ε >
ÚI¹2  A

`
I2

���������������������
W2

For stochastic matrices, W1 =W2 =1 for all J and the same class CJ  that minimizes the left hand

side maximizes the sum on the right hand side. In the general case, however, the class J which mini-

mizes A
`
JJ  does not necessarily maximize ÚI¹J  A

`
IJ , since a high mean partition fitness value leads to

relatively high values for both within and cross−partition  class communication rates. As a stronger

condition than (6.1a), we propose
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H6.1 bLHA`JJLminJ
>>

ikjjjjjâ
I¹J

 A
`
IJ

y{zzzzzmaxJ

where (6.1b)�(6.1a),(6.0) but not the converse. This inequality can be treated as a limiting case to

determine whether a mutation−selection  matrix A  has a Simon−Ando  partitioning, as it requires that

the lowest−valued  within−class  communication rate to be greater than the largest−valued  cross−class

communication rate (the index J on both sides of 6.1b does not generally refer to the same class, the J

on the left hand side refers to the partition class in which within−partition  communication is minimal,

the J on the right hand side refers to the partition class with maximal communication with outside

classes). This criterion makes heuristic sense, as it follows from (3.0) that all cross−class terms should

be of order Ε, orders of magnitude smaller than the terms which dominate the within−class  communica-

tion rates.

We propose two different classes of landscape decompositions as candidates for a  Simon−Ando

partitioning. The first example is the standard scenario of an adaptive peak and its immediate neighbor-

hood, in the form of a radius Κ, n−dimensional ball  (with n the number of loci) centered about a local

optimum x0I , to define the class CI ={ x|d(x,x0I )£Κ},  with the number of neighbors within and outside

the set determined by the topology of a Hamming graph. For the special case of Κ=1, we haveH6.2 aL
A
`
JJ = â

i,jÎJ

H1 - Hn - 1L ΜL Νj
*  wj + Hn - 1L Ν0

*  w0  Μ

= W�J  H1 - Hn - 1L ΜL + Hn - 1L Ν0
*  w0  Μ

â
I¹J

 A
`
IJ = â

I¹J

â
iÎI

â
jÎJ

Νj
*  wj  Μ = W�J  Hn - 1L Μ - Hn - 1L Ν0

*  w0  Μ

Similarly for Κ=2, one needs to take into account "residue" terms for both the Hamming dis-

tance 0 and 1 classes with the factor n−2. The sum over the Κ=2 terms gives a common factor with WJ .

This suggests a general form for any value of Κ<nH6.2 bL
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A
`
JJ = â

i,jÎJ

H1 - Hn - ΚL ΜL Νj
*  wj  Mij + â8jÈd Hx0,xjL=Κ< Hn - ΚL Νj

*  wj  Μ

= WJ  H1 - Hn - ΚL ΜL + Hn - ΚL â8jÈd Hx0,xjL=Κ< Νj
*  wj  Μ

â
I¹J

 A
`
IJ = WJ  Hn - ΚL Μ - Hn - ΚL â8jÈd Hx0,xjL=Κ< Νj

*  wj  Μ

The inequality (6.1b) compares the minimal valued within−class  communication rate with the

maximal−valued  cross−class  communication rate. We will  denote these (respectively) as C1  and C2

with corresponding mean fitnesses W1  and W2 . Using the values in (6.2b) to determine when (6.1) is

satisfied, we getH6.3L
W1  H1 - Hn - Κ1L ΜL + Hn - Κ1L â8jÈd Hx0,xjL=Κ1< Νj

*  wj  Μ >>

W2  Hn - Κ2L Μ - Hn - Κ2L â8jÈd Hx0,xjL=Κ2< Νj
*  wj  Μ

The subscripts below the Κ values indicate the fact that C1  and C2  need not be partitions of the same

size, because in general, an n−dimensional  hypercube need not be fully  partitionable into a set of balls

of a fixed radius Κ. Any hypercube where 2n ¹0 mod (n+1) cannot be fully  partitioned into radius Κ

−balls, and even hypercubes where n+1 does divide 2n  cannot always be subdivided into balls of a

fixed radius. However, with the assumption that a single vertex is a trivial (radius 0) ball, some partition-

ing into balls of varying radii is always possible. In most cases, Κ1 ¹Κ2 , though there are special cases

(for example, if  n=3, a partition into Κ=1 balls about 000 and 111) where the lattice can be fully  parti-

tioned into balls of the same radius.

Because more terms are added to the left hand side term than those added to the right for larger

values of Κ, it is clear that a larger radius about any given point is more likely to give to a Simon−Ando

partition. This suggests upper and lower bounds for each side of the inequality, as condition (6.3) will

be satisfied for sufficiently small Μ if  the following relations hold (obviously, the converse need not be

true for sufficiently large values of Hn - ΚL Ú8jÈd Hx0,xjL<Κ< Νj
*  wj  Μ )
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H6.4 aL
W1  H1 - Hn - Κ1L ΜL >> W2  Hn - Κ2L Μ �

W1�������
W2

>>
Hn - Κ2L Μ

��������������������������������
1 - Hn - Κ1L Μ

�
W1�������������������������������������������������������������

n HW1 + W2L - Κ1  W1 - Κ2  W2
>> Μ

in the special case where Κ1 =Κ2 , the inequality isH6.4 bL
W1  H1 - Hn - ΚL ΜL >> W2  Hn - ΚL Μ �

W1�������
W2

>>
Hn - ΚL Μ

������������������������������
1 - Hn - ΚL Μ

�
W1����������������������������������������Hn - ΚL HW1 + W2L >> Μ

If  we chose a sufficiently small per−site  mutation rate Μ  (for small values of Κ and W1  and W2

of roughly the same order, Μ << 1�����n ), the time scale decoupling characteristic of Simon−Ando  systems

will  be satisfied for a partition about a local optimum.

In most models of sequence evolution, Μ is chosen to be of the order 1�����n , in which case Simon−

Ando  aggregation is not likely to give a very close approximation to the system dynamics. In order for

the Simon−Ando  approximation to hold, the mutation rate must be very low, implying that while there

may be a time−decoupling  across partitions, the within−class  approach to equilibrium will  also proceed

very slowly. An interesting consequence of this result is that for sufficiently small mutation rates, a

"flat"  fitness landscape (i.e. one where W(x)=1 for all genotypes x) will  be Simon−And decomposable

for an arbitrary partitioning (provided that each partition is radius Κ n−ball  about any center vertex). In

this special case at least, the time decoupling is due entirely to mutational connectivity within the

partitions rather than any fitness differentials within or between partitions.

Our intuition suggested that a fitness landscape structure of several peaks with partition border

regions defined by valleys would be necessary to achieve Simon−Ando , in fact this is not the case. A

given mutation rate does place constraints on the maximal mean fitness differential across partitions,

however, as setting W1 =1 and W2 =1+S and rearranging terms in (6.4) implies:

S <<
1 - 2 nΜ - Μ HΚ1 + Κ2L
��������������������������������������������������

Μ Hn - Κ2L
again, when Κ1 =Κ2 , the relation is

S <<
1 - 2 Μ Hn - ΚL
����������������������������������

Μ Hn - ΚL
Since the parameter is defined so that S>0, this constraint is only meaningful for Μ(n−k)<1/2

and  Μ<<1/n. If  these conditions are met, the inequality requires that the mean fitness differential across

classes must be less than the term on the right hand side. This places a constraint on the choice of

partitions, i.e. one cannot chose one class C1  with a fitness substantially larger than that of C2 , at least

not for biologically realistic values of Μ. Consequently, if  a fitness landscape consists of a relatively

limited number of high−fitness  vertices with the remaining genotypes a low−fitness  valley, no partition

class can be chosen to consist solely of low fitness genotypes. For example, any partitioning a two−

peak  landscape with high fitness vertices at (for instance) {00...0} and {11...1} and W(x)<<1 else-

where must include one of the peaks, limiting the total number of possible partitions to two. The disad-

vantage of this constraint should be obvious: if  the goal of the decomposition and partition approach is

to reduce the effective number of state variables, one stands to gain comparatively little in terms of

computational efficiency by partitioning a landscape into two blocks. 

Furthermore, the above constraints on the value of S require that the differences in fitness

betweenthe peaks in different partition classes must not be too great. If  there were a large difference in

fitness between two peaks, intuition suggests that offspring of the higher fitness region would saturate

the entire landscape faster than the lower fitness local peak neighborhoods could attain quasi−equilib-

rium. This is confirmed by the result that a  separation in fitness between partition neighborhoods is

inconsistent with Simon−Ando  dynamics. 

It  should be noted that these inequalities place no constraints on the internal structure of each

partition class. Intuition might suggest that the "ideal" scenario for Simon−Ando  decomposability

would be a partitioning where each block consists of a center "peak" surrounded by lower fitness geno-

types at the periphery, because we expect lower fitness genotypes at the edges of a partition to communi-

cate with outside partitions at a lower rate than would high fitness vertices. Though certain within−

partition class  properties may certainly facilitate cross−class  separation, as the example of a landscape

with all genotypes having a fitness of unity illustrates, there need not be any constraints on within−

partition class  fitness distributions given a sufficiently low mutation rate. 

The internal structure of the partition classes may become important for higher mutation rates,

i.e. in situations where (6.4) is not satisfied while (6.3), as the more general condition, does hold for a

choice of partitions. While (6.4) only places conditions on the mean fitnesses of individual classes, the

"residual" terms in (6.3), is 
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Since the parameter is defined so that S>0, this constraint is only meaningful for Μ(n−k)<1/2

and  Μ<<1/n. If  these conditions are met, the inequality requires that the mean fitness differential across

classes must be less than the term on the right hand side. This places a constraint on the choice of

partitions, i.e. one cannot chose one class C1  with a fitness substantially larger than that of C2 , at least

not for biologically realistic values of Μ. Consequently, if  a fitness landscape consists of a relatively

limited number of high−fitness  vertices with the remaining genotypes a low−fitness  valley, no partition

class can be chosen to consist solely of low fitness genotypes. For example, any partitioning a two−

peak  landscape with high fitness vertices at (for instance) {00...0} and {11...1} and W(x)<<1 else-

where must include one of the peaks, limiting the total number of possible partitions to two. The disad-

vantage of this constraint should be obvious: if  the goal of the decomposition and partition approach is

to reduce the effective number of state variables, one stands to gain comparatively little in terms of

computational efficiency by partitioning a landscape into two blocks. 

Furthermore, the above constraints on the value of S require that the differences in fitness

betweenthe peaks in different partition classes must not be too great. If  there were a large difference in

fitness between two peaks, intuition suggests that offspring of the higher fitness region would saturate

the entire landscape faster than the lower fitness local peak neighborhoods could attain quasi−equilib-

rium. This is confirmed by the result that a  separation in fitness between partition neighborhoods is

inconsistent with Simon−Ando  dynamics. 

It  should be noted that these inequalities place no constraints on the internal structure of each

partition class. Intuition might suggest that the "ideal" scenario for Simon−Ando  decomposability

would be a partitioning where each block consists of a center "peak" surrounded by lower fitness geno-

types at the periphery, because we expect lower fitness genotypes at the edges of a partition to communi-

cate with outside partitions at a lower rate than would high fitness vertices. Though certain within−

partition class  properties may certainly facilitate cross−class  separation, as the example of a landscape

with all genotypes having a fitness of unity illustrates, there need not be any constraints on within−

partition class  fitness distributions given a sufficiently low mutation rate. 

The internal structure of the partition classes may become important for higher mutation rates,

i.e. in situations where (6.4) is not satisfied while (6.3), as the more general condition, does hold for a

choice of partitions. While (6.4) only places conditions on the mean fitnesses of individual classes, the

"residual" terms in (6.3), is 
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Since the parameter is defined so that S>0, this constraint is only meaningful for Μ(n−k)<1/2

and  Μ<<1/n. If  these conditions are met, the inequality requires that the mean fitness differential across

classes must be less than the term on the right hand side. This places a constraint on the choice of

partitions, i.e. one cannot chose one class C1  with a fitness substantially larger than that of C2 , at least

not for biologically realistic values of Μ. Consequently, if  a fitness landscape consists of a relatively

limited number of high−fitness  vertices with the remaining genotypes a low−fitness  valley, no partition

class can be chosen to consist solely of low fitness genotypes. For example, any partitioning a two−

peak  landscape with high fitness vertices at (for instance) {00...0} and {11...1} and W(x)<<1 else-

where must include one of the peaks, limiting the total number of possible partitions to two. The disad-

vantage of this constraint should be obvious: if  the goal of the decomposition and partition approach is

to reduce the effective number of state variables, one stands to gain comparatively little in terms of

computational efficiency by partitioning a landscape into two blocks. 

Furthermore, the above constraints on the value of S require that the differences in fitness

betweenthe peaks in different partition classes must not be too great. If  there were a large difference in

fitness between two peaks, intuition suggests that offspring of the higher fitness region would saturate

the entire landscape faster than the lower fitness local peak neighborhoods could attain quasi−equilib-

rium. This is confirmed by the result that a  separation in fitness between partition neighborhoods is

inconsistent with Simon−Ando  dynamics. 

It  should be noted that these inequalities place no constraints on the internal structure of each

partition class. Intuition might suggest that the "ideal" scenario for Simon−Ando  decomposability

would be a partitioning where each block consists of a center "peak" surrounded by lower fitness geno-

types at the periphery, because we expect lower fitness genotypes at the edges of a partition to communi-

cate with outside partitions at a lower rate than would high fitness vertices. Though certain within−

partition class  properties may certainly facilitate cross−class  separation, as the example of a landscape

with all genotypes having a fitness of unity illustrates, there need not be any constraints on within−

partition class  fitness distributions given a sufficiently low mutation rate. 

The internal structure of the partition classes may become important for higher mutation rates,

i.e. in situations where (6.4) is not satisfied while (6.3), as the more general condition, does hold for a

choice of partitions. While (6.4) only places conditions on the mean fitnesses of individual classes, the

"residual" terms in (6.3), is 

Hn - ΚL â8jÈd Hx0,xjL<Κ< Νj
*  wj  Μ

In order for this term to have a significant effect on the relative magnitudes of the two sides of

the inequality in (6.3), the product Νj
*  wj  must be large for j|d(xo ,x j )<Κ. For example, in the case of Κ

=1, the fitness and (consequently) the quasiequilibrium frequency of the center optimum must be signifi-

cantly higher to compensate for the difference. In this situation, the standard "peak and valley" intuition

does seem to be consistent with the requirements for decomposability.

An alternative partitioning we investigated in the context of Simon−Ando  decomposition is one

where each CI  contains members of an equivalence class characterized by common allelic states at any

particular locus or subset of loci. One can interpret these equivalence classes as partitionings according

to shared "character state" or "schema" identity (sensu Holland 1977, Goldberg 1989, Altenberg 1994).

As examples, for a single locus schema, the equivalence classes are {0**...*},{1**...*},  for a two locus

schema {00**..*},{01**...*},{10**...*},{11**...*},  where **...*  represent arbitrary allelic configura-

tions at the remaining loci and the schema loci are chosen to be the first Κ for the sake of convenience.

For a two allele system, there are 2Κ  equivalence classes (where a decomposition based on the allelic

identity at a single locus gives only two classes, while a multilocus schema can be interpreted as giving

rise to "nested" sequential partitions over 1,2...Κ site equivalence classes).

It  should be obvious that for a Κ−length  schema, there are Κ point mutations that put the off-

spring into another equivalence class versus n−Κ  possible mutations that remain inside the partition.

Applying (6.1a) to these partitions, 

H6.5L A
`
JJ = â

i,jÎJ

H1 - ΚΜL Νj
*  wj  Mij = WJ  H1 - ΚΜL

â
I¹J

 A
`
IJ = WJ  ΚΜ

 Note that both the internal and cross class communication rates are in this case independent of

the total number of loci, being determined solely by the mutation rate and the number of sites defining

a schema. Here we use C1  and C2  to denote the schema classes with the minimal intra−component

communication rate and maximal cross−partition  class communication rate. 

In order for Simon−Ando  separation to apply, we need
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 Note that both the internal and cross class communication rates are in this case independent of

the total number of loci, being determined solely by the mutation rate and the number of sites defining

a schema. Here we use C1  and C2  to denote the schema classes with the minimal intra−component

communication rate and maximal cross−partition  class communication rate. 

In order for Simon−Ando  separation to apply, we needH6.6L
W1  H1 - ΚΜL >> W2  ΚΜ �

W1�������
W2

>>
ΚΜ

���������������
1 - ΚΜ

,
W1���������������������������

Κ HW1 + W1L >> Μ

which, along with the expected constraint on mutation rate, implies a stronger separation for smaller Κ

(fewer loci defining fewer partitions). Rewriting (6.6) in terms of selection parameter S, where W1 =1−

S, W2 =1, the inequality is equivalent to S<< 1�������������1-ΚΜ . For ΚΜ~1/n, this is S<< n�����������n-1  (implying that for large

numbers of loci, no more than a twofold difference in mean partition fitness is permissible). 

The mean fitness WJ  can be interpreted as the marginal fitness of the particular schema configu-

ration defining the Jth partition class. For example, in a twofold landscape partition defined by 1**...*

versus 0**...*,  WJ  represents the mean (marginal) fitness of allele 1 or 0 at the first locus. Because

aggregability of the partition implies the (near) dynamical sufficiency of mean fitness and effective

transition rate parameters, the condition (6.6) can be seen as indicating when schema can be treated as

"units of selection" (see below). For this condition to be satisfied, the internal cohesion within an equiva-

lence class must be greater than the communication from outside partitions, and as the inequality above

indicates, this holds only when the mean (marginal) fitness of any particular schema configuration is of

approximately the same order as the mean fitness of the other configurations.

A  series of numerical experiments (computed using Mathematica,  with programs available

from the senior author on request) confirm that the landscapes induced by mutation−selection  matrices

satisfying (6.1b) are aggregable and decomposable. What is somewhat open−ended  given the con-

straints on mutation rates and fitness differences in (6.4b) etc. is just how small the per−locus  mutation

rate Μ has to be with respect to the ratio on the left hand side. It turns out that for certain landscapes, the

Simon−Ando  approximation to xiI (t) and ΝiI
* XI (t) (and therefore, approximations of stationary distribu-

tions ΝiI = ΝiI
* XI

�
, with X

�
 the stationary distribution for A

`
) breaks down for all but very small mutation

rates, while for others the results are robust for biologically realistic transition rates.

 We begin with the special case of a system where the fitnesses of every genotype are identi-

cally set to unity. Using a five locus, two allele system as an example, we (for convenience) chose the

equivalence classes to be all of the vertices within Hamming distance 2 from {00000} and {11111}

respectively. Clearly, the within−class  quasi−equilibria  ΝI
*  will  approximate uniform distributions

irrespective of mutation rates, with the global distribution over the T1 <t time interval approximated by

the product of initial within−partition  aggregate frequencies and the within−class  uniform distributions.

Choosing the mutation rate to be Μ=0.01<<0.25,  we compare the equilibrium genotype distributions

ΝiI  (first  eigenvector) of  the mutation−selection  matrix  A  to the aggregation of  variables esti-

matesΝiI
*  XI

�
 in Figure 1. The mean−square  error is approximately 0.08, which is a reasonable approxi-

mation (and one which doesn’t improve with lower mutation rates, reflecting the fact that 6.4b gives a

sufficient but not necessary condition for time−separation).  

In the next set of figures, we repeat the same calculations, but in this case we have multiplica-

tive  fitness functions about each local  optimum, so that the fitness of  any genotype is

W(x)=W0 H1 - sLdmin Hx,x0 L with x0  the nearest local optimum and s=0.1. The mutation rate is set to Μ

=0.01, while the peak fitnesses are chosen to be {1,1}  in Figure 2 and {1,0.9} in Figure 3. The first

case corresponds to the "degenerate quasispecies" discussed by Eigen and Schuster (1989) and

Schuster and Swetina (1988), with identical eigenvalues Λ1 =Λ2 =.990181 where the associated eigenvec-

tors have most of their probability density about either peak (Fig 2a). The stationary distribution

(plotted in Figure 2b) can be constructed as a weighted superposition of eigenvectors associated with

the leading degenerate eigenvalue.

Aggregation of variables gives a very good approximation to the stationary distribution for this

fitness landscape. The values of ΝiI
*  XI

�
 are plotted against the stationary distribution in 2b. The mean−

square error of Ν versus ΝI
*  XI

�
 is of the order of 10-2 , a value that  improves for lower values of Μ (e.g.

Μ=0.001 gives errors of the order of 10-5 . This is consistent with our expectation, since the Simon−

Ando  approximation improves for lower transition rates.

The results are similar for the landscape where the two peaks differ in height, apart from the

fact that the eigenspace is non−degenerate. The normalized leading eigenvector (corresponding to the

equilibrium distribution) is plotted against ΝI
*  XI

�
 in Figure 3, again giving a close match with a mean−

square  error at the order of 10-2 . We note that the approximations are good whether we use the repre-

sentation of aggregate transition rates (1.1) or (3.13).

The situation becomes more interesting in the case of two−peaked  landscapes with nearly

identical peak fitnesses. Consider a scenario where one peak has a fitness of unity while the other has a

value close to unity, i.e. 0.999. It was shown by Schuster and Swetina (1988) and Wilke (2001b) that

for sufficiently high mutation rates the equilibrium distribution depends on the fitnesses of the immedi-

ate mutational neighbors of each peak. Namely, if  the more fit  peak is surrounded by relatively low

fitness neighbors while the peak with slightly lower fitness has comparatively high fitness neighbors

(corresponding to a "mutationally robust" or "genetically canalized" genotype, e.g. Wagner et al 1996),

the equilibrium density will  often be concentrated at the somewhat lower "plateau" rather than the

sharp, isolated peak.

We replicated these results in Figure 4, which depicts the equilibrium genotype distribution for

a  fitness  function  defined  by  W(x)=W1 H1 - s1Ldmin Hx,x1 L  about  the  first  peak  and

W(x)=W2 H1 - s2Ldmin Hx,x2 L  about the second peak, where s1 =0.9 and s2 =0.1 and x1 , x2  are the local

peak vertices (representing a fitness landscape with one sharp peak and a relatively flat fitness plateau).

The fitness values are chosen such that the peak is slightly higher than the plateau, i.e. W1 =1.0,

W1 =.99.

The first computations are for a relatively high mutation rate of Μ=0.1, which as expected gives

a stationary distribution at the plateau. If  we approximate the aggregate dynamics as (1.1), the estimate

of the leading eigenvector is completely misleading, specifically, it  predicts a stationary distribution

concentrated at the peak. However, using (3.13) to estimate the leading eigenvector does predict a

distribution concentrated at the "plateau," although it can be readily seen in Fig 4 that the match is not

very close (the mean square error in this case is nearly 0.2). This is due to the fact that if  we use Μ

=0.01, the stationary distribution is still  concentrated at the plateau and the aggregate distribution is

somewhat improved, being just under 0.1.

For substantially smaller (and biologically unrealistic) mutation rates such as Μ=0.001, the

stationary distribution is always concentrated at the highest peak (because, as Schuster and Swetina

demonstrated, selection pressure in favor of the lower plateau is a second order effect that scales in

proportion to mutation rate, when mutation rates are sufficiently low, peak genotype offspring rarely

"encounter" their neighbors). For this case, Simon−Ando  aggregation gives very good estimates (Fig-

ure 4b), giving square error values of the order of 10-3.The estimates are good both for (1.1) and (3.13)

as operators for the aggregate dynamics.

The applicability of Simon−Ando  decomposability to these model landscapes has some interest-

ing implications for the way one thinks about units of selection. It was suggested in Shpak et al (2003)

that aggregation of variables offers a natural approach to identifying units of selection above the geno-

type level, in that aggregation methods involve partitioning the genotype space into coherently interact-

ing subsets. Indeed, one criterion proposed for identifying units of selection is that of dynamical suffi-

ciency (see Lewontin 1970, Wimsatt 1981).

While a case can be made that landscape partition classes behave as coherent entities, it doesn’t

seem to be the case that they must necessarily do so as a consequence of Simon−Ando  dynamics. For

example, Phase III  of  Wright’s "shifting balance" model (1932) in  which interdemic selection

(aggregate competition between sets of genotypes composing more or less isolated peaks and their

neighborhoods) is actually incompatible with a Simon−Ando  model, because mean fitness differences

between neighborhoods are in violation of (6.4b). Yet interdemic selection (as a special case of group

selection) has been shown to be at least in principle a possible, if not necessarily an important, evolution-

ary force (Coyne et al, 1997) .

Similarly, the example of a landscape with an isolated high fitness peak competing against a

lower fitness but more "robust" genotypes is a case in point, i.e. the parameter values where the plateau

dominates the distribution are also those where the Simon−Ando  approximation starts to break down

due to relatively high mutation rates. Yet the long−term  behavior of such a system can be predicted

from the fact that the eigenvalues associated with the plateau are larger than those associated with the

isolated peak under the right choice of parameters (Schuster and Swetina 1988, Wilke 2001), which

suggests that in some sense of the word the competition is taking place between the peak and plateau as

aggregate entities. This suggests that one can have higher−order  entities that act coherently under

selection whose aggregability is not necessarily a result of the fast−slow  dynamics. As a case in point,

competition between two−peaked  landscapes was analyzed in the context of unweighted equitable

partitions whose aggregativity was exact and not time dependent, contra Simon−Ando .

We now turn our attention to another issue in the units of selection question that can be eluci-

dated by Simon−Ando  aggregation and decomposition: the problem of character identification and

schema−based  identity classes.
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which, along with the expected constraint on mutation rate, implies a stronger separation for smaller Κ

(fewer loci defining fewer partitions). Rewriting (6.6) in terms of selection parameter S, where W1 =1−

S, W2 =1, the inequality is equivalent to S<< 1�������������1-ΚΜ . For ΚΜ~1/n, this is S<< n�����������n-1  (implying that for large

numbers of loci, no more than a twofold difference in mean partition fitness is permissible). 

The mean fitness WJ  can be interpreted as the marginal fitness of the particular schema configu-

ration defining the Jth partition class. For example, in a twofold landscape partition defined by 1**...*

versus 0**...*,  WJ  represents the mean (marginal) fitness of allele 1 or 0 at the first locus. Because

aggregability of the partition implies the (near) dynamical sufficiency of mean fitness and effective

transition rate parameters, the condition (6.6) can be seen as indicating when schema can be treated as

"units of selection" (see below). For this condition to be satisfied, the internal cohesion within an equiva-

lence class must be greater than the communication from outside partitions, and as the inequality above

indicates, this holds only when the mean (marginal) fitness of any particular schema configuration is of

approximately the same order as the mean fitness of the other configurations.

A  series of numerical experiments (computed using Mathematica,  with programs available

from the senior author on request) confirm that the landscapes induced by mutation−selection  matrices

satisfying (6.1b) are aggregable and decomposable. What is somewhat open−ended  given the con-

straints on mutation rates and fitness differences in (6.4b) etc. is just how small the per−locus  mutation

rate Μ has to be with respect to the ratio on the left hand side. It turns out that for certain landscapes, the

Simon−Ando  approximation to xiI (t) and ΝiI
* XI (t) (and therefore, approximations of stationary distribu-

tions ΝiI = ΝiI
* XI

�
, with X

�
 the stationary distribution for A

`
) breaks down for all but very small mutation

rates, while for others the results are robust for biologically realistic transition rates.

 We begin with the special case of a system where the fitnesses of every genotype are identi-

cally set to unity. Using a five locus, two allele system as an example, we (for convenience) chose the

equivalence classes to be all of the vertices within Hamming distance 2 from {00000} and {11111}

respectively. Clearly, the within−class  quasi−equilibria  ΝI
*  will  approximate uniform distributions

irrespective of mutation rates, with the global distribution over the T1 <t time interval approximated by

the product of initial within−partition  aggregate frequencies and the within−class  uniform distributions.

Choosing the mutation rate to be Μ=0.01<<0.25,  we compare the equilibrium genotype distributions

ΝiI  (first  eigenvector) of  the mutation−selection  matrix  A  to the aggregation of  variables esti-

matesΝiI
*  XI

�
 in Figure 1. The mean−square  error is approximately 0.08, which is a reasonable approxi-

mation (and one which doesn’t improve with lower mutation rates, reflecting the fact that 6.4b gives a

sufficient but not necessary condition for time−separation).  

In the next set of figures, we repeat the same calculations, but in this case we have multiplica-

tive  fitness functions about each local  optimum, so that the fitness of  any genotype is

W(x)=W0 H1 - sLdmin Hx,x0 L with x0  the nearest local optimum and s=0.1. The mutation rate is set to Μ

=0.01, while the peak fitnesses are chosen to be {1,1}  in Figure 2 and {1,0.9} in Figure 3. The first

case corresponds to the "degenerate quasispecies" discussed by Eigen and Schuster (1989) and

Schuster and Swetina (1988), with identical eigenvalues Λ1 =Λ2 =.990181 where the associated eigenvec-

tors have most of their probability density about either peak (Fig 2a). The stationary distribution

(plotted in Figure 2b) can be constructed as a weighted superposition of eigenvectors associated with

the leading degenerate eigenvalue.

Aggregation of variables gives a very good approximation to the stationary distribution for this

fitness landscape. The values of ΝiI
*  XI

�
 are plotted against the stationary distribution in 2b. The mean−

square error of Ν versus ΝI
*  XI

�
 is of the order of 10-2 , a value that  improves for lower values of Μ (e.g.

Μ=0.001 gives errors of the order of 10-5 . This is consistent with our expectation, since the Simon−

Ando  approximation improves for lower transition rates.

The results are similar for the landscape where the two peaks differ in height, apart from the

fact that the eigenspace is non−degenerate. The normalized leading eigenvector (corresponding to the

equilibrium distribution) is plotted against ΝI
*  XI

�
 in Figure 3, again giving a close match with a mean−

square  error at the order of 10-2 . We note that the approximations are good whether we use the repre-

sentation of aggregate transition rates (1.1) or (3.13).

The situation becomes more interesting in the case of two−peaked  landscapes with nearly

identical peak fitnesses. Consider a scenario where one peak has a fitness of unity while the other has a

value close to unity, i.e. 0.999. It was shown by Schuster and Swetina (1988) and Wilke (2001b) that

for sufficiently high mutation rates the equilibrium distribution depends on the fitnesses of the immedi-

ate mutational neighbors of each peak. Namely, if  the more fit  peak is surrounded by relatively low

fitness neighbors while the peak with slightly lower fitness has comparatively high fitness neighbors

(corresponding to a "mutationally robust" or "genetically canalized" genotype, e.g. Wagner et al 1996),

the equilibrium density will  often be concentrated at the somewhat lower "plateau" rather than the

sharp, isolated peak.

We replicated these results in Figure 4, which depicts the equilibrium genotype distribution for

a  fitness  function  defined  by  W(x)=W1 H1 - s1Ldmin Hx,x1 L  about  the  first  peak  and

W(x)=W2 H1 - s2Ldmin Hx,x2 L  about the second peak, where s1 =0.9 and s2 =0.1 and x1 , x2  are the local

peak vertices (representing a fitness landscape with one sharp peak and a relatively flat fitness plateau).

The fitness values are chosen such that the peak is slightly higher than the plateau, i.e. W1 =1.0,

W1 =.99.

The first computations are for a relatively high mutation rate of Μ=0.1, which as expected gives

a stationary distribution at the plateau. If  we approximate the aggregate dynamics as (1.1), the estimate

of the leading eigenvector is completely misleading, specifically, it  predicts a stationary distribution

concentrated at the peak. However, using (3.13) to estimate the leading eigenvector does predict a

distribution concentrated at the "plateau," although it can be readily seen in Fig 4 that the match is not

very close (the mean square error in this case is nearly 0.2). This is due to the fact that if  we use Μ

=0.01, the stationary distribution is still  concentrated at the plateau and the aggregate distribution is

somewhat improved, being just under 0.1.

For substantially smaller (and biologically unrealistic) mutation rates such as Μ=0.001, the

stationary distribution is always concentrated at the highest peak (because, as Schuster and Swetina

demonstrated, selection pressure in favor of the lower plateau is a second order effect that scales in

proportion to mutation rate, when mutation rates are sufficiently low, peak genotype offspring rarely

"encounter" their neighbors). For this case, Simon−Ando  aggregation gives very good estimates (Fig-

ure 4b), giving square error values of the order of 10-3.The estimates are good both for (1.1) and (3.13)

as operators for the aggregate dynamics.

The applicability of Simon−Ando  decomposability to these model landscapes has some interest-

ing implications for the way one thinks about units of selection. It was suggested in Shpak et al (2003)

that aggregation of variables offers a natural approach to identifying units of selection above the geno-

type level, in that aggregation methods involve partitioning the genotype space into coherently interact-

ing subsets. Indeed, one criterion proposed for identifying units of selection is that of dynamical suffi-

ciency (see Lewontin 1970, Wimsatt 1981).

While a case can be made that landscape partition classes behave as coherent entities, it doesn’t

seem to be the case that they must necessarily do so as a consequence of Simon−Ando  dynamics. For

example, Phase III  of  Wright’s "shifting balance" model (1932) in  which interdemic selection

(aggregate competition between sets of genotypes composing more or less isolated peaks and their

neighborhoods) is actually incompatible with a Simon−Ando  model, because mean fitness differences

between neighborhoods are in violation of (6.4b). Yet interdemic selection (as a special case of group

selection) has been shown to be at least in principle a possible, if not necessarily an important, evolution-

ary force (Coyne et al, 1997) .

Similarly, the example of a landscape with an isolated high fitness peak competing against a

lower fitness but more "robust" genotypes is a case in point, i.e. the parameter values where the plateau

dominates the distribution are also those where the Simon−Ando  approximation starts to break down

due to relatively high mutation rates. Yet the long−term  behavior of such a system can be predicted

from the fact that the eigenvalues associated with the plateau are larger than those associated with the

isolated peak under the right choice of parameters (Schuster and Swetina 1988, Wilke 2001), which

suggests that in some sense of the word the competition is taking place between the peak and plateau as

aggregate entities. This suggests that one can have higher−order  entities that act coherently under

selection whose aggregability is not necessarily a result of the fast−slow  dynamics. As a case in point,

competition between two−peaked  landscapes was analyzed in the context of unweighted equitable

partitions whose aggregativity was exact and not time dependent, contra Simon−Ando .

We now turn our attention to another issue in the units of selection question that can be eluci-

dated by Simon−Ando  aggregation and decomposition: the problem of character identification and

schema−based  identity classes.

SimonAndoEdit.nb 28



which, along with the expected constraint on mutation rate, implies a stronger separation for smaller Κ

(fewer loci defining fewer partitions). Rewriting (6.6) in terms of selection parameter S, where W1 =1−

S, W2 =1, the inequality is equivalent to S<< 1�������������1-ΚΜ . For ΚΜ~1/n, this is S<< n�����������n-1  (implying that for large

numbers of loci, no more than a twofold difference in mean partition fitness is permissible). 

The mean fitness WJ  can be interpreted as the marginal fitness of the particular schema configu-

ration defining the Jth partition class. For example, in a twofold landscape partition defined by 1**...*

versus 0**...*,  WJ  represents the mean (marginal) fitness of allele 1 or 0 at the first locus. Because

aggregability of the partition implies the (near) dynamical sufficiency of mean fitness and effective

transition rate parameters, the condition (6.6) can be seen as indicating when schema can be treated as

"units of selection" (see below). For this condition to be satisfied, the internal cohesion within an equiva-

lence class must be greater than the communication from outside partitions, and as the inequality above

indicates, this holds only when the mean (marginal) fitness of any particular schema configuration is of

approximately the same order as the mean fitness of the other configurations.

A  series of numerical experiments (computed using Mathematica,  with programs available

from the senior author on request) confirm that the landscapes induced by mutation−selection  matrices

satisfying (6.1b) are aggregable and decomposable. What is somewhat open−ended  given the con-

straints on mutation rates and fitness differences in (6.4b) etc. is just how small the per−locus  mutation

rate Μ has to be with respect to the ratio on the left hand side. It turns out that for certain landscapes, the

Simon−Ando  approximation to xiI (t) and ΝiI
* XI (t) (and therefore, approximations of stationary distribu-

tions ΝiI = ΝiI
* XI

�
, with X

�
 the stationary distribution for A

`
) breaks down for all but very small mutation

rates, while for others the results are robust for biologically realistic transition rates.

 We begin with the special case of a system where the fitnesses of every genotype are identi-

cally set to unity. Using a five locus, two allele system as an example, we (for convenience) chose the

equivalence classes to be all of the vertices within Hamming distance 2 from {00000} and {11111}

respectively. Clearly, the within−class  quasi−equilibria  ΝI
*  will  approximate uniform distributions

irrespective of mutation rates, with the global distribution over the T1 <t time interval approximated by

the product of initial within−partition  aggregate frequencies and the within−class  uniform distributions.

Choosing the mutation rate to be Μ=0.01<<0.25,  we compare the equilibrium genotype distributions

ΝiI  (first  eigenvector) of  the mutation−selection  matrix  A  to the aggregation of  variables esti-

matesΝiI
*  XI

�
 in Figure 1. The mean−square  error is approximately 0.08, which is a reasonable approxi-

mation (and one which doesn’t improve with lower mutation rates, reflecting the fact that 6.4b gives a

sufficient but not necessary condition for time−separation).  

In the next set of figures, we repeat the same calculations, but in this case we have multiplica-

tive  fitness functions about each local  optimum, so that the fitness of  any genotype is

W(x)=W0 H1 - sLdmin Hx,x0 L with x0  the nearest local optimum and s=0.1. The mutation rate is set to Μ

=0.01, while the peak fitnesses are chosen to be {1,1}  in Figure 2 and {1,0.9} in Figure 3. The first

case corresponds to the "degenerate quasispecies" discussed by Eigen and Schuster (1989) and

Schuster and Swetina (1988), with identical eigenvalues Λ1 =Λ2 =.990181 where the associated eigenvec-

tors have most of their probability density about either peak (Fig 2a). The stationary distribution

(plotted in Figure 2b) can be constructed as a weighted superposition of eigenvectors associated with

the leading degenerate eigenvalue.

Aggregation of variables gives a very good approximation to the stationary distribution for this

fitness landscape. The values of ΝiI
*  XI

�
 are plotted against the stationary distribution in 2b. The mean−

square error of Ν versus ΝI
*  XI

�
 is of the order of 10-2 , a value that  improves for lower values of Μ (e.g.

Μ=0.001 gives errors of the order of 10-5 . This is consistent with our expectation, since the Simon−

Ando  approximation improves for lower transition rates.

The results are similar for the landscape where the two peaks differ in height, apart from the

fact that the eigenspace is non−degenerate. The normalized leading eigenvector (corresponding to the

equilibrium distribution) is plotted against ΝI
*  XI

�
 in Figure 3, again giving a close match with a mean−

square  error at the order of 10-2 . We note that the approximations are good whether we use the repre-

sentation of aggregate transition rates (1.1) or (3.13).

The situation becomes more interesting in the case of two−peaked  landscapes with nearly

identical peak fitnesses. Consider a scenario where one peak has a fitness of unity while the other has a

value close to unity, i.e. 0.999. It was shown by Schuster and Swetina (1988) and Wilke (2001b) that

for sufficiently high mutation rates the equilibrium distribution depends on the fitnesses of the immedi-

ate mutational neighbors of each peak. Namely, if  the more fit  peak is surrounded by relatively low

fitness neighbors while the peak with slightly lower fitness has comparatively high fitness neighbors

(corresponding to a "mutationally robust" or "genetically canalized" genotype, e.g. Wagner et al 1996),

the equilibrium density will  often be concentrated at the somewhat lower "plateau" rather than the

sharp, isolated peak.

We replicated these results in Figure 4, which depicts the equilibrium genotype distribution for

a  fitness  function  defined  by  W(x)=W1 H1 - s1Ldmin Hx,x1 L  about  the  first  peak  and

W(x)=W2 H1 - s2Ldmin Hx,x2 L  about the second peak, where s1 =0.9 and s2 =0.1 and x1 , x2  are the local

peak vertices (representing a fitness landscape with one sharp peak and a relatively flat fitness plateau).

The fitness values are chosen such that the peak is slightly higher than the plateau, i.e. W1 =1.0,

W1 =.99.

The first computations are for a relatively high mutation rate of Μ=0.1, which as expected gives

a stationary distribution at the plateau. If  we approximate the aggregate dynamics as (1.1), the estimate

of the leading eigenvector is completely misleading, specifically, it  predicts a stationary distribution

concentrated at the peak. However, using (3.13) to estimate the leading eigenvector does predict a

distribution concentrated at the "plateau," although it can be readily seen in Fig 4 that the match is not

very close (the mean square error in this case is nearly 0.2). This is due to the fact that if  we use Μ

=0.01, the stationary distribution is still  concentrated at the plateau and the aggregate distribution is

somewhat improved, being just under 0.1.

For substantially smaller (and biologically unrealistic) mutation rates such as Μ=0.001, the

stationary distribution is always concentrated at the highest peak (because, as Schuster and Swetina

demonstrated, selection pressure in favor of the lower plateau is a second order effect that scales in

proportion to mutation rate, when mutation rates are sufficiently low, peak genotype offspring rarely

"encounter" their neighbors). For this case, Simon−Ando  aggregation gives very good estimates (Fig-

ure 4b), giving square error values of the order of 10-3.The estimates are good both for (1.1) and (3.13)

as operators for the aggregate dynamics.

The applicability of Simon−Ando  decomposability to these model landscapes has some interest-

ing implications for the way one thinks about units of selection. It was suggested in Shpak et al (2003)

that aggregation of variables offers a natural approach to identifying units of selection above the geno-

type level, in that aggregation methods involve partitioning the genotype space into coherently interact-

ing subsets. Indeed, one criterion proposed for identifying units of selection is that of dynamical suffi-

ciency (see Lewontin 1970, Wimsatt 1981).

While a case can be made that landscape partition classes behave as coherent entities, it doesn’t

seem to be the case that they must necessarily do so as a consequence of Simon−Ando  dynamics. For

example, Phase III  of  Wright’s "shifting balance" model (1932) in  which interdemic selection

(aggregate competition between sets of genotypes composing more or less isolated peaks and their

neighborhoods) is actually incompatible with a Simon−Ando  model, because mean fitness differences

between neighborhoods are in violation of (6.4b). Yet interdemic selection (as a special case of group

selection) has been shown to be at least in principle a possible, if not necessarily an important, evolution-

ary force (Coyne et al, 1997) .

Similarly, the example of a landscape with an isolated high fitness peak competing against a

lower fitness but more "robust" genotypes is a case in point, i.e. the parameter values where the plateau

dominates the distribution are also those where the Simon−Ando  approximation starts to break down

due to relatively high mutation rates. Yet the long−term  behavior of such a system can be predicted

from the fact that the eigenvalues associated with the plateau are larger than those associated with the

isolated peak under the right choice of parameters (Schuster and Swetina 1988, Wilke 2001), which

suggests that in some sense of the word the competition is taking place between the peak and plateau as

aggregate entities. This suggests that one can have higher−order  entities that act coherently under

selection whose aggregability is not necessarily a result of the fast−slow  dynamics. As a case in point,

competition between two−peaked  landscapes was analyzed in the context of unweighted equitable

partitions whose aggregativity was exact and not time dependent, contra Simon−Ando .

We now turn our attention to another issue in the units of selection question that can be eluci-

dated by Simon−Ando  aggregation and decomposition: the problem of character identification and

schema−based  identity classes.
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which, along with the expected constraint on mutation rate, implies a stronger separation for smaller Κ

(fewer loci defining fewer partitions). Rewriting (6.6) in terms of selection parameter S, where W1 =1−

S, W2 =1, the inequality is equivalent to S<< 1�������������1-ΚΜ . For ΚΜ~1/n, this is S<< n�����������n-1  (implying that for large

numbers of loci, no more than a twofold difference in mean partition fitness is permissible). 

The mean fitness WJ  can be interpreted as the marginal fitness of the particular schema configu-

ration defining the Jth partition class. For example, in a twofold landscape partition defined by 1**...*

versus 0**...*,  WJ  represents the mean (marginal) fitness of allele 1 or 0 at the first locus. Because

aggregability of the partition implies the (near) dynamical sufficiency of mean fitness and effective

transition rate parameters, the condition (6.6) can be seen as indicating when schema can be treated as

"units of selection" (see below). For this condition to be satisfied, the internal cohesion within an equiva-

lence class must be greater than the communication from outside partitions, and as the inequality above

indicates, this holds only when the mean (marginal) fitness of any particular schema configuration is of

approximately the same order as the mean fitness of the other configurations.

A  series of numerical experiments (computed using Mathematica,  with programs available

from the senior author on request) confirm that the landscapes induced by mutation−selection  matrices

satisfying (6.1b) are aggregable and decomposable. What is somewhat open−ended  given the con-

straints on mutation rates and fitness differences in (6.4b) etc. is just how small the per−locus  mutation

rate Μ has to be with respect to the ratio on the left hand side. It turns out that for certain landscapes, the

Simon−Ando  approximation to xiI (t) and ΝiI
* XI (t) (and therefore, approximations of stationary distribu-

tions ΝiI = ΝiI
* XI

�
, with X

�
 the stationary distribution for A

`
) breaks down for all but very small mutation

rates, while for others the results are robust for biologically realistic transition rates.

 We begin with the special case of a system where the fitnesses of every genotype are identi-

cally set to unity. Using a five locus, two allele system as an example, we (for convenience) chose the

equivalence classes to be all of the vertices within Hamming distance 2 from {00000} and {11111}

respectively. Clearly, the within−class  quasi−equilibria  ΝI
*  will  approximate uniform distributions

irrespective of mutation rates, with the global distribution over the T1 <t time interval approximated by

the product of initial within−partition  aggregate frequencies and the within−class  uniform distributions.

Choosing the mutation rate to be Μ=0.01<<0.25,  we compare the equilibrium genotype distributions

ΝiI  (first  eigenvector) of  the mutation−selection  matrix  A  to the aggregation of  variables esti-

matesΝiI
*  XI

�
 in Figure 1. The mean−square  error is approximately 0.08, which is a reasonable approxi-

mation (and one which doesn’t improve with lower mutation rates, reflecting the fact that 6.4b gives a

sufficient but not necessary condition for time−separation).  

In the next set of figures, we repeat the same calculations, but in this case we have multiplica-

tive  fitness functions about each local  optimum, so that the fitness of  any genotype is

W(x)=W0 H1 - sLdmin Hx,x0 L with x0  the nearest local optimum and s=0.1. The mutation rate is set to Μ

=0.01, while the peak fitnesses are chosen to be {1,1}  in Figure 2 and {1,0.9} in Figure 3. The first

case corresponds to the "degenerate quasispecies" discussed by Eigen and Schuster (1989) and

Schuster and Swetina (1988), with identical eigenvalues Λ1 =Λ2 =.990181 where the associated eigenvec-

tors have most of their probability density about either peak (Fig 2a). The stationary distribution

(plotted in Figure 2b) can be constructed as a weighted superposition of eigenvectors associated with

the leading degenerate eigenvalue.

Aggregation of variables gives a very good approximation to the stationary distribution for this

fitness landscape. The values of ΝiI
*  XI

�
 are plotted against the stationary distribution in 2b. The mean−

square error of Ν versus ΝI
*  XI

�
 is of the order of 10-2 , a value that  improves for lower values of Μ (e.g.

Μ=0.001 gives errors of the order of 10-5 . This is consistent with our expectation, since the Simon−

Ando  approximation improves for lower transition rates.

The results are similar for the landscape where the two peaks differ in height, apart from the

fact that the eigenspace is non−degenerate. The normalized leading eigenvector (corresponding to the

equilibrium distribution) is plotted against ΝI
*  XI

�
 in Figure 3, again giving a close match with a mean−

square  error at the order of 10-2 . We note that the approximations are good whether we use the repre-

sentation of aggregate transition rates (1.1) or (3.13).

The situation becomes more interesting in the case of two−peaked  landscapes with nearly

identical peak fitnesses. Consider a scenario where one peak has a fitness of unity while the other has a

value close to unity, i.e. 0.999. It was shown by Schuster and Swetina (1988) and Wilke (2001b) that

for sufficiently high mutation rates the equilibrium distribution depends on the fitnesses of the immedi-

ate mutational neighbors of each peak. Namely, if  the more fit  peak is surrounded by relatively low

fitness neighbors while the peak with slightly lower fitness has comparatively high fitness neighbors

(corresponding to a "mutationally robust" or "genetically canalized" genotype, e.g. Wagner et al 1996),

the equilibrium density will  often be concentrated at the somewhat lower "plateau" rather than the

sharp, isolated peak.

We replicated these results in Figure 4, which depicts the equilibrium genotype distribution for

a  fitness  function  defined  by  W(x)=W1 H1 - s1Ldmin Hx,x1 L  about  the  first  peak  and

W(x)=W2 H1 - s2Ldmin Hx,x2 L  about the second peak, where s1 =0.9 and s2 =0.1 and x1 , x2  are the local

peak vertices (representing a fitness landscape with one sharp peak and a relatively flat fitness plateau).

The fitness values are chosen such that the peak is slightly higher than the plateau, i.e. W1 =1.0,

W1 =.99.

The first computations are for a relatively high mutation rate of Μ=0.1, which as expected gives

a stationary distribution at the plateau. If  we approximate the aggregate dynamics as (1.1), the estimate

of the leading eigenvector is completely misleading, specifically, it  predicts a stationary distribution

concentrated at the peak. However, using (3.13) to estimate the leading eigenvector does predict a

distribution concentrated at the "plateau," although it can be readily seen in Fig 4 that the match is not

very close (the mean square error in this case is nearly 0.2). This is due to the fact that if  we use Μ

=0.01, the stationary distribution is still  concentrated at the plateau and the aggregate distribution is

somewhat improved, being just under 0.1.

For substantially smaller (and biologically unrealistic) mutation rates such as Μ=0.001, the

stationary distribution is always concentrated at the highest peak (because, as Schuster and Swetina

demonstrated, selection pressure in favor of the lower plateau is a second order effect that scales in

proportion to mutation rate, when mutation rates are sufficiently low, peak genotype offspring rarely

"encounter" their neighbors). For this case, Simon−Ando  aggregation gives very good estimates (Fig-

ure 4b), giving square error values of the order of 10-3.The estimates are good both for (1.1) and (3.13)

as operators for the aggregate dynamics.

The applicability of Simon−Ando  decomposability to these model landscapes has some interest-

ing implications for the way one thinks about units of selection. It was suggested in Shpak et al (2003)

that aggregation of variables offers a natural approach to identifying units of selection above the geno-

type level, in that aggregation methods involve partitioning the genotype space into coherently interact-

ing subsets. Indeed, one criterion proposed for identifying units of selection is that of dynamical suffi-

ciency (see Lewontin 1970, Wimsatt 1981).

While a case can be made that landscape partition classes behave as coherent entities, it doesn’t

seem to be the case that they must necessarily do so as a consequence of Simon−Ando  dynamics. For

example, Phase III  of  Wright’s "shifting balance" model (1932) in  which interdemic selection

(aggregate competition between sets of genotypes composing more or less isolated peaks and their

neighborhoods) is actually incompatible with a Simon−Ando  model, because mean fitness differences

between neighborhoods are in violation of (6.4b). Yet interdemic selection (as a special case of group

selection) has been shown to be at least in principle a possible, if not necessarily an important, evolution-

ary force (Coyne et al, 1997) .

Similarly, the example of a landscape with an isolated high fitness peak competing against a

lower fitness but more "robust" genotypes is a case in point, i.e. the parameter values where the plateau

dominates the distribution are also those where the Simon−Ando  approximation starts to break down

due to relatively high mutation rates. Yet the long−term  behavior of such a system can be predicted

from the fact that the eigenvalues associated with the plateau are larger than those associated with the

isolated peak under the right choice of parameters (Schuster and Swetina 1988, Wilke 2001), which

suggests that in some sense of the word the competition is taking place between the peak and plateau as

aggregate entities. This suggests that one can have higher−order  entities that act coherently under

selection whose aggregability is not necessarily a result of the fast−slow  dynamics. As a case in point,

competition between two−peaked  landscapes was analyzed in the context of unweighted equitable

partitions whose aggregativity was exact and not time dependent, contra Simon−Ando .

We now turn our attention to another issue in the units of selection question that can be eluci-

dated by Simon−Ando  aggregation and decomposition: the problem of character identification and

schema−based  identity classes.

à Schema  Partitioning  and the Definition  of  Evolutionary  
Characters

In our earlier paper (Shpak et al 2003), we compared the formal property of landscape decom-

posability into equitable partitions defined by fitness and mutational distance equivalence classes to the

character state decomposition models developed in Wagner and Laubichler (2000a,b). The latter form

of decomposability defines equivalence classes in terms of identical allelic states at a locus or over

subsets of loci (schema). It  can be seen that in general equitable partitions need not correspond to

schema equivalence classes.

However, there are cases where an equitable partitioning does correspond to a partitioning into

schema equivalence classes. In the previous section we examined a partitioning defined by schema

which for the appropriate choice of mutation rate and fitness function (6.6) satisfies the condition for

Simon−Ando  decomposability (which, in turn, is a special case of weighted equitable partitioning).

Each schema equivalence class and its frequency can be interpreted as a "character state," and when the

mutation−selection  system is nearly decomposable, the frequencies of the equivalence classes are a

dynamically sufficient descriptor of the evolutionary process. Since one condition for identifying units

of evolution is determining whether the entities in question are dynamically sufficient, it is natural to

equate selection on a schema class with selection for an independent character state.

What then is the relationship between Simon−Ando  decomposability of schema partitions and

the character partitionings of Wagner and Laubichler? To recapitulate Wagner and Laubichler’s results

(with changes made to the notation for consistency with this paper, as well as some formal adjustments

for a discrete−time  representation), define a set of genotypes { x1 ....xN }  with an associated frequency

vector pi ={ p1 ...pN }.  The equivalence classes C1 ={ C1 ....Ck }  and their associated frequencies

ΠI ={ Π1 ...Πm }   are defined such that every genotype xΕCI  has an identical allelic state at a particular

locus. More generally, the equivalence classes are defined as a set of genotypes identical over some

arbitrary subset of sites, or a "schema" (sensu Holland 1975, Goldberg 1988, Altenberg 1995). One

such equivalence class (defined as an allele at a single locus) for a 4−locus  genotype would be the set

of all genotypes C1  of the form 0***,  C2  of those of the form 1***,  defining partition C. In turn,

another class of partitions C2  will  be defined by the allelic identity at the second locus, and so forth.

Wagner and Laubichler define the Cartesian product C1 xC2  to be an oc (orthogonal compli-

ment) partitioning if  C=C1 xC2 , or more generally, C=C1 xC2 ...xCΝ . For example, C=C1 xC2 could be

the Cartesian product of allelic variants at loci 1 and 2, respectively. The authors construct an oc−

partition  by choosing a set of invertible functions F={ fij |f:Ci ®C j }  which maps every element in one

equivalence class to the corresponding genotype in another class. For example, f could map 101 to 001,

with *01 defining an (orthogonal) equivalence class with respect to the first locus. In the case where F

is a family of transitive maps, i.e. s=fIJ (x) and t= fJL (u) implies t= fIL (x), F defines a complementary

(orthogonal) partitioning C
���

={ C1
����

...Ck
����

},  where every class is in the complementary partition is C
���

={ s>x

if  there is fIJ ΕF|s= fIJ (x)}.  This mapping specifies an equivalence relation because the functions in f are

transitive and invertible (Rosen 1984, Bogart 1990), and consequently defines each genotype x as

x=CI ÝCJ
����

.

Given an oc−partitioning, Wagner and Laubichler have shown that for fitness functions satisfy-

ing the additivity condition and for "character" frequencies satisfying a generalized linkage equilib-

rium, the equivalence class frequencies ΠI  are a dynamically sufficient descriptor of evolution under a

selection operator. 

Carter (1997, unpublished) has shown that the equivalent condition in discrete time requires

that all fitness functions are multiplicative across partitions, with w the Malthusian fitness parameter:
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In our earlier paper (Shpak et al 2003), we compared the formal property of landscape decom-

posability into equitable partitions defined by fitness and mutational distance equivalence classes to the

character state decomposition models developed in Wagner and Laubichler (2000a,b). The latter form

of decomposability defines equivalence classes in terms of identical allelic states at a locus or over

subsets of loci (schema). It  can be seen that in general equitable partitions need not correspond to

schema equivalence classes.

However, there are cases where an equitable partitioning does correspond to a partitioning into

schema equivalence classes. In the previous section we examined a partitioning defined by schema

which for the appropriate choice of mutation rate and fitness function (6.6) satisfies the condition for

Simon−Ando  decomposability (which, in turn, is a special case of weighted equitable partitioning).

Each schema equivalence class and its frequency can be interpreted as a "character state," and when the

mutation−selection  system is nearly decomposable, the frequencies of the equivalence classes are a

dynamically sufficient descriptor of the evolutionary process. Since one condition for identifying units

of evolution is determining whether the entities in question are dynamically sufficient, it is natural to

equate selection on a schema class with selection for an independent character state.

What then is the relationship between Simon−Ando  decomposability of schema partitions and

the character partitionings of Wagner and Laubichler? To recapitulate Wagner and Laubichler’s results

(with changes made to the notation for consistency with this paper, as well as some formal adjustments

for a discrete−time  representation), define a set of genotypes { x1 ....xN }  with an associated frequency

vector pi ={ p1 ...pN }.  The equivalence classes C1 ={ C1 ....Ck }  and their associated frequencies

ΠI ={ Π1 ...Πm }   are defined such that every genotype xΕCI  has an identical allelic state at a particular

locus. More generally, the equivalence classes are defined as a set of genotypes identical over some

arbitrary subset of sites, or a "schema" (sensu Holland 1975, Goldberg 1988, Altenberg 1995). One

such equivalence class (defined as an allele at a single locus) for a 4−locus  genotype would be the set

of all genotypes C1  of the form 0***,  C2  of those of the form 1***,  defining partition C. In turn,

another class of partitions C2  will  be defined by the allelic identity at the second locus, and so forth.

Wagner and Laubichler define the Cartesian product C1 xC2  to be an oc (orthogonal compli-

ment) partitioning if  C=C1 xC2 , or more generally, C=C1 xC2 ...xCΝ . For example, C=C1 xC2 could be

the Cartesian product of allelic variants at loci 1 and 2, respectively. The authors construct an oc−

partition  by choosing a set of invertible functions F={ fij |f:Ci ®C j }  which maps every element in one

equivalence class to the corresponding genotype in another class. For example, f could map 101 to 001,

with *01 defining an (orthogonal) equivalence class with respect to the first locus. In the case where F

is a family of transitive maps, i.e. s=fIJ (x) and t= fJL (u) implies t= fIL (x), F defines a complementary

(orthogonal) partitioning C
���

={ C1
����

...Ck
����

},  where every class is in the complementary partition is C
���

={ s>x

if  there is fIJ ΕF|s= fIJ (x)}.  This mapping specifies an equivalence relation because the functions in f are

transitive and invertible (Rosen 1984, Bogart 1990), and consequently defines each genotype x as

x=CI ÝCJ
����

.

Given an oc−partitioning, Wagner and Laubichler have shown that for fitness functions satisfy-

ing the additivity condition and for "character" frequencies satisfying a generalized linkage equilib-

rium, the equivalence class frequencies ΠI  are a dynamically sufficient descriptor of evolution under a

selection operator. 

Carter (1997, unpublished) has shown that the equivalent condition in discrete time requires

that all fitness functions are multiplicative across partitions, with w the Malthusian fitness parameter:
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In our earlier paper (Shpak et al 2003), we compared the formal property of landscape decom-

posability into equitable partitions defined by fitness and mutational distance equivalence classes to the

character state decomposition models developed in Wagner and Laubichler (2000a,b). The latter form

of decomposability defines equivalence classes in terms of identical allelic states at a locus or over

subsets of loci (schema). It  can be seen that in general equitable partitions need not correspond to

schema equivalence classes.

However, there are cases where an equitable partitioning does correspond to a partitioning into

schema equivalence classes. In the previous section we examined a partitioning defined by schema

which for the appropriate choice of mutation rate and fitness function (6.6) satisfies the condition for

Simon−Ando  decomposability (which, in turn, is a special case of weighted equitable partitioning).

Each schema equivalence class and its frequency can be interpreted as a "character state," and when the

mutation−selection  system is nearly decomposable, the frequencies of the equivalence classes are a

dynamically sufficient descriptor of the evolutionary process. Since one condition for identifying units

of evolution is determining whether the entities in question are dynamically sufficient, it is natural to

equate selection on a schema class with selection for an independent character state.

What then is the relationship between Simon−Ando  decomposability of schema partitions and

the character partitionings of Wagner and Laubichler? To recapitulate Wagner and Laubichler’s results

(with changes made to the notation for consistency with this paper, as well as some formal adjustments

for a discrete−time  representation), define a set of genotypes { x1 ....xN }  with an associated frequency

vector pi ={ p1 ...pN }.  The equivalence classes C1 ={ C1 ....Ck }  and their associated frequencies

ΠI ={ Π1 ...Πm }   are defined such that every genotype xΕCI  has an identical allelic state at a particular

locus. More generally, the equivalence classes are defined as a set of genotypes identical over some

arbitrary subset of sites, or a "schema" (sensu Holland 1975, Goldberg 1988, Altenberg 1995). One

such equivalence class (defined as an allele at a single locus) for a 4−locus  genotype would be the set

of all genotypes C1  of the form 0***,  C2  of those of the form 1***,  defining partition C. In turn,

another class of partitions C2  will  be defined by the allelic identity at the second locus, and so forth.

Wagner and Laubichler define the Cartesian product C1 xC2  to be an oc (orthogonal compli-

ment) partitioning if  C=C1 xC2 , or more generally, C=C1 xC2 ...xCΝ . For example, C=C1 xC2 could be

the Cartesian product of allelic variants at loci 1 and 2, respectively. The authors construct an oc−

partition  by choosing a set of invertible functions F={ fij |f:Ci ®C j }  which maps every element in one

equivalence class to the corresponding genotype in another class. For example, f could map 101 to 001,

with *01 defining an (orthogonal) equivalence class with respect to the first locus. In the case where F

is a family of transitive maps, i.e. s=fIJ (x) and t= fJL (u) implies t= fIL (x), F defines a complementary

(orthogonal) partitioning C
���

={ C1
����

...Ck
����

},  where every class is in the complementary partition is C
���

={ s>x

if  there is fIJ ΕF|s= fIJ (x)}.  This mapping specifies an equivalence relation because the functions in f are

transitive and invertible (Rosen 1984, Bogart 1990), and consequently defines each genotype x as

x=CI ÝCJ
����

.

Given an oc−partitioning, Wagner and Laubichler have shown that for fitness functions satisfy-

ing the additivity condition and for "character" frequencies satisfying a generalized linkage equilib-

rium, the equivalence class frequencies ΠI  are a dynamically sufficient descriptor of evolution under a

selection operator. 

Carter (1997, unpublished) has shown that the equivalent condition in discrete time requires

that all fitness functions are multiplicative across partitions, with w the Malthusian fitness parameter:H6.7L w  HfIJ  HxLL = cIJ  w  HxL
In other words, the fitness differences between members of the same equivalence class (i.e. allelic state

at a particular locus) are determined by a constant product term cIJ  determined by the rest of the geno-

type or character state configuration. This effectively excludes any type of nonlinearity due to epistasis

in fitness functions. The other condition, of course, is generalized linkage equilibrium, 

H6.8L pI  HfIJ  HxLL = pJ  HxL, where pJ  HxL =
p HxL
���������������

ΠJ

with p(x) denoting the frequency of x while pJ (x) refers to the marginal frequency in the Jth partition.

This definition is equivalent to the conventional linkage equilibrium condition p(xÎΠI ÝΠ��J )=ΠI Π��J  .

It  was shown in Carter’s derivation that if  these criteria are met, the selection equation on

genotypes (here in discrete time)H6.9 aL pi  Ht + 1L = pi  HtL wi

can be aggregated into a dynamically sufficient description asH6.9 bL ΠI  Ht + 1L = ΠI  HtL w�I

The condition required for these to hold is that the within−class  variances in fitness VI  be the same

across partition classes CI =C1 ....Cm . This condition turns out to be generally stable only under multipli-

cative fitness and generalized linkage equilibrium.

In order to make a meaningful comparison between character partitioning under generalized

linkage equilibrium and Simon−Ando , it is necessary to determine under which models of transmission

(mutation) the within−class  variances (and by extension, the generalized linkage equilibrium) are

remain stable. In an unpublished manuscript, Altenberg (2002) proposed that for two orthogonal parti-

tions C1  and C2  the following tensor product definition of generalized linkage equilibrium is stable

under multiplicative fitness functions and mutation operators:
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The condition required for these to hold is that the within−class  variances in fitness VI  be the same

across partition classes CI =C1 ....Cm . This condition turns out to be generally stable only under multipli-

cative fitness and generalized linkage equilibrium.

In order to make a meaningful comparison between character partitioning under generalized

linkage equilibrium and Simon−Ando , it is necessary to determine under which models of transmission

(mutation) the within−class  variances (and by extension, the generalized linkage equilibrium) are

remain stable. In an unpublished manuscript, Altenberg (2002) proposed that for two orthogonal parti-

tions C1  and C2  the following tensor product definition of generalized linkage equilibrium is stable

under multiplicative fitness functions and mutation operators:H6.10L x HtL = x1 Ä x2 = Hxi1 xj2Li=1... N1, j=1... N2

where Ä  is the Kronecker product operator HA Ä BLij =AB. In vector form, the within−partition  fre-

quency distributions x are given by x1 =(I1 Ä12
T )x and x2 =(11

T ÄI2 )x, where I  is an identity matrix and

1 is a vector of 1’s corresponding to the number of orthogonal classes in the respective partitionings.

Rewriting the transition operator A=WM , with the diagonal fitness matrix W and M the muta-

tion matrix, in order to satisfy the multiplicativity condition,H6.11L W = W1 Ä W2

and a similar structure for the mutation operator across two partitioningsH6.12L M = M1 Ä M2

which can be extended to an arbitrary number of orthogonal partitions as W=W1 ÄW2 ...Ä Wm  etc. An

interpretation of (5.6) is that mutation rates are independent at each locus (or partition) irrespective of

the identity at the other loci.

 To show that a Kronecker product model of mutation and fitness effects conserves partition

independence and generalized equilibrium, note that

x Ht + 1L = HW Ä WL HM Ä ML Hx1  HtL Ä x2  HtLL =HMWL x1  HtL Ä HMWL x2  HtL = x1  Ht + 1L Ä x2  Ht + 1L
implying that x,x are dynamically sufficient descriptors, since (5.7) implies that each equivalence class

frequency trajectory can be represented as
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x1  Ht + 1L = W1  M1  x1  HtL, x2  Ht + 1L = W2  M2  x2  HtL
This proves that generalized linkage equilibrium x=x1 Äx2  is stable given multiplicative fitness

and mutation rate. The results can be summarized as saying that dynamical sufficiency of schema

frequencies (i.e. "character decomposability") requires independent mutation rates and multiplicative

fitness across partitions as well as multiplicativity of cross−partition  class frequencies.

This is in contrast to the conditions under which a schema−based  partitioning is decomposable

according to the Simon−Ando  criterion.  Simon−Ando  decomposition places no conditions on the

frequency distribution apart from the requirement that the distribution within a partition class be in

quasi−equilibrium  (which, in general, would generate strong linkage disequilibria). Consequently, we

can conclude that the two cases in which schema frequencies are dynamically sufficient as evolutionary

"characters" are entirely independent of one another, suggesting at least two different sets of conditions

(i.e. 6.6 versus 6.11−12  combined with linkage equilibrium) where schema can modelled as units of

evolution.

If  aggregativity and decomposability into classes defined by Hamming distance suggests units

of selection above the genotype level, there are interesting conceptual implications for interpreting a

partitioning based on schema equivalence classes. Traditionally, in any system where schema (e.g.

allelic) frequencies are dynamically sufficient, evolution is thought of as occurring at a level below that

of the genotype. In particular, when allele frequencies are a dynamically sufficient descriptor, it is often

stated that the "gene" is the unit of evolution.

In reality, in both cases where schema frequencies are dynamically sufficient (i.e. the Wagner−

Laubichler  criterion and Simon−Ando) , the aggregation and decomposition procedures are formally

equivalent to the Κ−ball  partitions in that they involve treating sets of genotypes as aggregate entities.

In other words, if  we are to consider the case where Κ−ball  partitions are dynamically sufficient as

selection on a set of genotypes ("group selection" in some broad sense), then it is not meaningful to

think of the case of dynamically sufficient schema classes as selection below the level of the genotype.

Quite the contrary, allelic or schema frequencies are simply a book−keeping  shorthand for the frequen-

cies of an aggregate class, and it  is the symmetries or fitness equivalences within these classes that

make the "gene frequency" shorthand possible. Far from confirming that selection occurs at the genic

level, the dynamical sufficiency of schema frequencies actually lends support to the idea of units of

evolution above the genotype level.
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and mutation rate. The results can be summarized as saying that dynamical sufficiency of schema
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equivalent to the Κ−ball  partitions in that they involve treating sets of genotypes as aggregate entities.

In other words, if  we are to consider the case where Κ−ball  partitions are dynamically sufficient as

selection on a set of genotypes ("group selection" in some broad sense), then it is not meaningful to

think of the case of dynamically sufficient schema classes as selection below the level of the genotype.

Quite the contrary, allelic or schema frequencies are simply a book−keeping  shorthand for the frequen-

cies of an aggregate class, and it  is the symmetries or fitness equivalences within these classes that

make the "gene frequency" shorthand possible. Far from confirming that selection occurs at the genic

level, the dynamical sufficiency of schema frequencies actually lends support to the idea of units of

evolution above the genotype level.

� Recombination and Simon−Ando  Decomposability

The constraints on which mutation−selection  systems have Simon−Ando  dynamics are a gen-

eral result of the neighborhood relations (specifically, the Hamming graph) induced by point mutation

acting on Boolean or Α−alphabet  strings. It is natural to ask whether Simon−Ando  dynamics can arise

under different transmission operators, namely recombination. It has been shown elsewhere (Gitchoff

and Wagner 1997) that the configuration space Χ  induced by recombination is a hypergraph with

"edges" consisting of intermediate recombinant classes. Here we ask whether  Simon−Ando  decompos-

ability can exist given a recombination−induced  configuration space. It  seems intuitive that Simon−

Ando  decomposability may be more difficult  to achieve because a much wider spectrum of possible

offspring genotypes can be produced under recombination than under point mutation, thus reducing the

internal cohesion of any neighborhood class of genotypes. 

Both the neighborhood relationships and the transition probabilities attached to these edges

differ from any model of mutation in that they depend on which partner genotypes are present in the

population. As a result, the transition rates Aij  are generally dependent on the probability of encounter-

ing of recombinant partner k in the population. Under random mating the transition rate from j to k is

given by Aij =Úk=1
n xk  Tjk®i , where Tjk®i  is the probability that a pairing of genotypes j,k produces

recombinant offspring i. Under these assumptions the recombination−selection  equations are

H7.1L xi  Ht + 1L = â
j=1

N â
k=1

N

 wj  wk  xj  xk  Tjk®i

Again, we use absolute frequencies and Malthusian fitnesses to avoid the complications of a mean

fitness term in the denominator. If  mating is nonrandom, the most general representation replaces xi x j

above with Φ(xi ,x j ), which is the joint probability of the i,j pairing.

Under the action of a point mutation operator, the neighborhood sets of any genotype were

definable as the point mutational neighbors (i.e. all i  neighbors of j  if  Μij ¹0, or Μij <Ε<<1), a similar

definition of recombination neighbors based on Úk=1
n xk  Tjk®i  is less straightforward because it depends

on the distribution of parental genotypes in the population. In general, a crossover operator involves a

function on vertex (genotype) pairs Χ:(V,V)®(V,V), in contrast to the mutation operator Ξ:V®V.

The general structure of a recombination operator can be described as follows: given a length n

string with a Α−letter  alphabet (Α=2 for Boolean strings), we represent the crossover operator Χ by

denoting the kth site of genotype y as yk , which gives us Χ(y,z)=(u,v), "k:(yk =uk ßzk =vk )Þ (zk =uk ß
yk =vk ),  i.e. at all  sites k, the recombinant takes on the site identity of parent y while the sister

(complementary) recombinant takes on the site identity of parent z. An arbitrary recombination opera-

tor R can be represented as a mapping from the set of vertex pairs onto the power set of V, i.e. R:(-

V,V)®P(V), hence the P−structure  terminology in Stadler and Wagner (1999).

For an operator R1  associated with a single point recombination event, recombination at the kth

point gives us (following the notation of Stadler et al 2000, Stadler and Wagner 1999):
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tor R can be represented as a mapping from the set of vertex pairs onto the power set of V, i.e. R:(-

V,V)®P(V), hence the P−structure  terminology in Stadler and Wagner (1999).

For an operator R1  associated with a single point recombination event, recombination at the kth

point gives us (following the notation of Stadler et al 2000, Stadler and Wagner 1999):

R1 (y,z)=Χk (y,z)={ (y1 ...yk zk+1 ...zn ),(z1 ...zk yk+1 ...yn )}

This definition of the offspring set can obviously be generalized to arbitrarily many crossover

points. The limiting case given a high per−site  recombination rate is one where any number of recombi-

nation points from none to all n loci are equally possible (i.e. "uniform crossover"), whereby each site k

in a given offspring has an equal likelihood of coming from either parental genotype. The action of the

uniform recombination operator RU  on two parental strings is described by:

RU (y,z)={ (v1 ...vn ): vi =yi  or zi  " i}

Given a Hamming distance H(y,z)=d between the two parental sequences, it can be shown that

the size of the recombination sets is (Gitchoff and Wagner, 1996):

||R1 (y,z)||= 2d when y¹z, 1 if y=z

||RU (y,z)||=2d

For the sake of computational simplicity, we will  only examine the cases of uniform and single−

point  recombination, as they are the limiting cases under very high and relatively low crossover rates.

We now turn to the question of whether recombination systems can satisfy the conditions for

Simon−Ando  near−decomposability, i.e. whether there exist fitness landscapes that induce a fast−slow

dynamic and local quasiequilibria under the action of recombination. The existence of such quasi−

equilbria  implies that in principle an aggregation of state variables and parameters is possible, allowing

the construction of dynamically sufficient representation of aggregate recombination dynamics
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XI  Ht + 1L = â
J

â
K

WJ  WK  XJ  XK  TJK®I

where we define XI =ÚiÎI ΝiI
*  and WJ  as the mean fitness within  the partition ÚiÎI wi  ΝiI

* ,  the

"aggregate" recombination rate across partitions is estimated by TJK®I =ÚiÎI Ú jÎJ ÚkÎK ΝiI
*  ΝiI

*  Tjk®i .

It should be noted that since (7.1) is a quadratic dynamical system (e.g. Rabinovich et al 1992,

Rabani et al 1995), there is no reason to expect that either the inequalities defining Simon−Ando  type

properties or the aggregation rules for linear systems should apply here. However, since one of the

defining properties of a Simon−Ando  dynamic is the existence of local quasi−equilibrium  distributions,

if  there exists such as distribution p*  for evolution under recombination and selection, then we can

approximate p(t+1)=f(p(t)) as a linearization about p* .

It  is important to remember that any statements about the structure of the linearized transition

operator A’  do not allow one to make a statement about whether the recombination−selection  system

will  have Simon−Ando  type fast−slow  dynamics. In order to do so, one needs information about the

long−term  behavior of the system, one in which the distribution of state variables can be quite far

removed from any particular choice of distribution for the local linearization. So in stating that the

linearized representation is "Simon−Ando " or that it satisfies (6.1b), the most that can really be said is

that the local behavior of the system at some particular distribution is consistent with Simon−Ando  in

the short term (for instance, one can infer the near−stability  of local quasi−equilibria). 

However, we propose that the local linearization serves as a heuristically useful tool for identfy-

ing systems that are not Simon−Ando  as well as those which satisfy the local quasi−equilibrium  proper-

ties associated with the first phase of Simon−Ando  dynamics. If  even the local linearization fails to

have Simon−Ando  structure, then clearly the system will  not have Simon−Ando  type dynamics glo-

bally. Conversely, if  the local linearization gives a transition operator consistent with Simon−Ando

dynamics, then one can argue that at least the first stage of Simon−Ando  decomposability, i.e. the

existence of local quasi−equilibria, may be fulfilled.

Linearizing about the proposed quasi−equilibrium  distribution, we obtain,
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in the transformed coordinate system with the perturbation state variables u=(p(t)−p* ), the state dynam-

ics of u(t) are described in terms of the linear operator A’  where

A’ij = 2 wj  â
k=1

N

p*
k  wk  Tjkzi

can be evaluated given fitness and frequency distributions (as well as models of recombination) to

determined whether the system locally induces fast−slow  dynamical behavior. 

Applying the corresponding sums on both sides of corresponding to inequality (6.1b) to A’,  we

ask under which fitness functions and recombination rules the following will  hold:H7.3Li
k
jjjjjjjjã
iÎJ

ã
jÎJ

2 p*
j  wj  â

k=1

N

p*
k  wk  Tjkzi
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>>
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zzzzzzzz
max J

for some distribution p*  (where min/max J refer to the classes J which respectively minimize and

maximize the corresponding sides of the inequality). One can chose a "best case scenario" for this

condition to be satisfied, namely, one where the fitness values for partition corresponding to the maxi-

mal value equal to those corresponding to the minimal value, without any assumptions about the struc-

ture of distribution p*  as a limiting case.

As for point mutation, we investigate the decomposability properties with respect to two types

of partitions; first the partitioning defined in terms of schema equivalence classes, second the radius Κ n−

dimensional  balls around a fixed vertex point. For partitions defined by schema, the case of uniform

(free) recombination is relatively straightforward to analyze, because the transition probabilities across

schema depend only on the partial Hamming distances across the subset of loci defining the schema.

Specifically, if we rewrite (7.3) in the expanded form:
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where for an allelic alphabet of size 2 there are 2ns  partition classes CI  given ns  loci defining a

schema, each class containing 2n-ns  genotypes. Through abuse of notation, the indices K correspond to

partial Hamming distance classes where all members of the Kth partition are of partial Hamming dis-

tance K to the schema loci in the Jth class (with K=0 corresponding to the Jth class itself). Under free

recombination, for any two recombinant genotypes j,k with partial Hamming distances K=ds  the proba-

bilities TjkziÎJ =H 1�����2 Lds
, while  This is simply the probability that in any pairing of distance ds  over

the schema loci all of the parental types in schema class J are transmitted to the offspring. Therefore,

we have

A
`
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it  can be seen that for any choice of W1  and W2  (defined as before as the mean fitnesses of partitions

C1  and C2 , the subsets with the minimal within−class  and maximal cross−class  communication rates,

respectively), the Courtois inequality will  not be satisfied under free recombination, because the magni-

tude of ÚI¹2 A
`
I2  will  be of the same order as that of A

`
11 . If  on the other hand we posit a situation

where each genotype has a certain probability Ρ  of undergoing recombination in every generation

versus probability 1−Ρ  of reproducing through selfing, with overall genotype transition rates
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which, linearized about p gives the local transition operator A’  as
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From the above, the within and cross class transition rates are approximated by:
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Analogous to mutation−selection systems with very low mutation rates, it is relatively easy to

satisfy (6.1b) given a sufficiently small value of Ρ, except in cases where W2 >>W1 . This is to be

expected because of the way the model is formulated; as with mutation, offspring in each generation

tend to remain in the same partition as parents simply because for very low Ρ each genotype produces

offspring identical to itself. This form of internal stability is the trivial limiting case for which strict

sense "Simon−Ando " decomposability can apply even on a flat fitness landscape (though the degree of

inequality is certainly enhanced by the right choice of mean fitness differentials).

For single point recombination the combinatorics of the problem become much more problem-

atic. While under free recombination only the partial Hamming distances between recombinants are

needed to calculate the probability of remaining in the parental partition, in the case of single (or 2...n−1

point) recombination requires information about which particular loci determine the partial Hamming

distances and their lengths apart on the chromosome. For example, under single point recombination

the probability that a recombinant between {11000,00000} produces an offspring outside the 11***

equivalence class is less than the same for a schema defined by 1****1,  i.e. {10001,00000} because

there are more possible recombination events that could produce offspring outside the 1****1  class

than for 11***.

If  the equivalence classes are defined by a single locus, calculating the within and cross−parti-

tion  class transition rates TjkziÎJ = 1��������2 n  (for jΕJ and kÏJ), as the probability of recombination occur-

ring at that particular locus is simply the reciprocal of the number of loci, and given that a recombina-

tion even occurs there one half of the progeny will  be of the parental type. For a schema defined by two

loci, TjkziÎJ = 1��������2 n  for a partial Hamming distance of unity, while for a partial Hamming distance of

two, the probability of obtaining a parental recombinant is n-D������������2 n , where D is the number of loci separat-

ing the schema elements. In the case where ds  Hj, kL = 0, it is obvious that TjkziÎJ = 1.

From this we can calculate both sides of the Courtois inequality for the two locus schema under

single point recombination. The relevant equivalence classes with respect to a particular schema class

have the partial Hamming distances 0,1,2 based on how many schema loci have different allelic states

than the parent genotype (the same procedure with one fewer partial Hamming class can be used to

calculate the terms in the trivial case of a single locus schema).

Below W2  and W2  are the mean fitnesses of the partial Hamming distance 1,2 classes with

respect to partition J:
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The Courtois inequality is not readily satisfied in this case. While ÚI¹J A

`
IJ  can be minimized

by assuming WJ >>W0 ,W1 ,  the inequality requires a comparison of  A
`
JJ  minimal over all  J toÚI¹J A

`
IJ  maximal over all  J. Thus minimizing W,W with  respect to the maximum value forÚI¹J A

`
IJ  also reduces the magnitude of A

`
JJ , because the partition J which minimizes the latter is by

definition in the 0,1 partial Hamming classes with respect to Jmax. From this we can conclude that

(local) Simon−Ando  is not likely to occur under single point recombination in the absence of some

model which restricts the frequency of recombination itself.

It  should be apparent that for longer schema, calculating these transition probabilities will

require information about which schema loci  constitute the partial distances as well  as pairwise

(chromosome length) distances for each of those loci.  As such, we have no closed form  solution for

within and cross−partition  class transition rates under single−point  recombination, though these calcula-

tions should be fairly straightforward numerically for sufficiently short schema.

Turning now to partitioning defined by Hamming distance Κ radii with respect to some choice

of reference vertices (the first type of partitioning investigated in the context of mutation−selection

systems), chose partition CJ  as the set of genotypes within Hamming distance Κ of x0 . To calculateÚiÎJ Aij , the probability that the progeny i  of jΕJ are elements of the same partition, one needs the

following  set of  Hamming distances: d0 j  (distance between reference vertex and parent j),  d0 k

(distance between reference vertex and parent k), and dkj . 

From these quantities one can calculate the "shared" distance from the reference vertex to both

parents: kjk =(d0 k +d0 j −djk )/2 (i.e. if  the reference vertex consists of all 0’s, kjk  denotes the number of

shared 1’s in both parent sequences). In turn, the Hamming distance from the reference genotype to the

offspring is d0 i =kjk +mjk , with mjk  being the number of offspring loci with allelic states different from

the reference vertex which have been inherited from either parent j or k (but not both). This quantity

has a binomial distribution given free recombination,
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from which one can derive the probability that offspring i will  be within Hamming distance Κ of the

reference vertex (and thus within the partition),

TjkziÎJ = P Hd0 i £ ΚL = â
k=0

Κ-kjk

 Jdjk
k

N J 1
�����
2

Ndjk

Unfortunately, there is no actual closed form solution for this partial sum, which evaluates to

the following, where H21  is the Kummer confluent Hypergeometric function of the second kind, i.e.

H21 (a,b,c,z)=Úk=0
¥ HaLk  HbLk � HcLk zk � k !,
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To compute the cross−class  communication rates, one needs to define other equivalence classes

in terms of Hamming distances to some set of reference vertices, i.e.
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which, as for the sum over values within the Κ radius, has no closed form but evaluates to a multiple of

the Hypergeometric function H21 :
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Unfortunately, there is no way to collect p j w j  terms for partitions thus defined and derive a

result in terms of the mean fitnesses of each class. The reason for this is that while for uniform recombi-

nation schema−based  equivalence classes, each value Tjk®i  is equal for all kÎK, allowing one to factor

out a W
���

J . For recombination across Hamming−distance  based equivalence classes, Tjk®i  will  differ

according to one’s choice of k. This is another reason why there is no closed−form  expression for the

within versus cross−class  communication rates for this partition. Consequently, as far as we can deter-

mine the only way to evaluate whether any Hamming distance based partitioning is consistent with

Simon−Ando  is by numerical computation on a case−by−case  basis for each fitness function.

The situation is of course even more problematic for single−point  (or multipoint) recombina-

tion, in that the offspring classes have to be averaged over all parental types of given Hamming dis-

tances d of one another, as the probability of any offspring type depends not only on the Hamming

distances but on the lengths separating individual loci.

However, the analysis of  uniform recombination suggests one result that almost certainly

applies to most recombination−selection  systems. Because most modes of recombination allow the

production of offspring outside the parental partition at relatively high rates (as long as all possible

parental pairings are permitted with equal probability), it implies that in general achieving the condi-

tions for Simon−Ando  with recombination in each generation is unlikely. One rather trivial way of

achieving a much higher rate of within−partition  versus cross−partition  class communication is to

reduce the frequency of recombination events, i.e. as in the scenario investigated above, have probabil-

ity Ρ of sexual reproduction and 1−Ρ  of selfing. For Ρ<<1, most offspring are identical to their parents

and hence by default remain in whatever partition they belong in.

A more interesting model which we leave as an open−ended  question is what happens under

assortative mating. If  instead of random mating we assume that there is some pairing probability func-

tion f(p j ,pk ) that depends on the pairwise Hamming distances between j,k or on the partial Hamming

distances between relevant schema−defining  loci, it should be obvious that if  the parents tend of both

be members of the same partition there will  be a bias in producing offspring which are members of this

partition. This is a more interesting scenario than the facultative recombination model because it allows

for a non−trivial  internal transmission dynamic within and across partitions, as well as relating conceptu-

ally  to the origin of species through assortative mating mechanisms (Bush 1982, Kondrashov and

Minna 1986).
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à Discussion:  Future  Directions
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The question of just how "common" fitness landscapes with transition operators consistent with

(3.0) and by necessity (6.1) relative to the entire space of possible fitness landscapes might be can be

addressed from a number of directions. A natural approach would be to define a "landscape space" for

an n−locus  system, i.e. as a Fourier function space f:V¦R,

(9.1) f(v) = Úk=1
N ai Φk (v) + a0

where Φk (x) is a rule mapping each k−tuplet  subset genotype v onto a real−valued  contribution to

fitness. Representing each k−tuplet  as Σ1 Σ2 ...Σk  where Σi =±1, we have a straightforward representa-

tion of epistatic interactions as Walsh function components (Weinberger 1992, Stadler 1994, Stadler et

al 1998). Given a k−subset  of loci Πk  and summing over all Jn
k

N possible k−products:

Φk = â
x=1

Jn
k
N ä
iÎΠx

Σi

Now given a parameter space {a0 ...an },  we have a well−defined  fitness function space in this

way, we can ask what proportion of landscapes in this universe have a partitioning which satisfies

(6.1). Given the intractable dimensionality of this function space, a more reasonable starting point

might be simply to ask which orders of  epistatic interaction (i.e. fitness functions f=Φ,  given

"elementary landscapes" sensu Stadler 1994) tend to produce the desired landscapes.

An alternative method would be to characterize "valley" landscapes in terms of landscape

autocorrelation (Stadler 1994). Landscape autocorrelation has been related to orders of epistatic interac-

tion, there is a straightforward relationship between the statistical characterization and the underlying

epistatic rules that we can make use of. Such an approach may be fruitful because the conditions neces-

sary for valley landscapes seem to require strong local fitness function autocorrelation (producing

localized neighborhoods of high fitness genotypes) and globally low autocorrelation (leading to separa-

tion of the high fitness partitions by valleys).

Work on landscape connectivity by Gavrilets (Gavrilets and Gravner 1997, Gavrilets 1999)

suggests that high levels of connectivity are a generic property of high−dimensional  systems while

separation by broad valleys requires rather specialized conditions on the fitness functions. So whether

decomposable systems prove relevant is probably significant empirically than theoretically. We know

that they can be constructed even though most landscapes probably are not of this form, the question

remains whether this more restricted class of landscapes is common enough for aggregation of vari-

ables methods to be at all useful in analyzing mutation−selection  systems.

Therefore, what one is ultimately interested in is not whether random landscapes satisfy Simon−

Ando  or the "valley" generalization, but whether fitness landscapes in nature (i.e. real genetic systems)

tend to have the structure in question. This is a more complicated question to address given the diffi -

culty of measuring fitness in any but the most artificial systems, though a good starting point may be

the growing literature on RNA and protein landscapes defined in terms of the polymer’s performance

of a given catalytic function.

It  may be that Simon−Ando  decomposability (defined by 3.0 and 6.1) may be too restrictive,

and that even if  the transition operator for a fitness landscape cannot be represented in this form it may

still have some of the desired aggregation and decomposability properties. If  what we are interested in

general is the existence of classes of genotypes on a fitness landscape which behave as quasi−indepen-

dent  entities over a certain time scale, there may be a more general class of operators with the desired

dynamical property. What is more, finding such an alternative representation as a generalization of

Simon−Ando  may be of value even in describing systems which are consistent with the stronger crite-

rion, in that the alternative representation may allow for a greater reduction in the state space necessary

for a dynamically sufficient representation.

A partitioning consistent with (3.0) is restrictive in that it requires that every vertex be a mem-

ber of a partition where every element communicates strongly with some of the vertices that are mem-

bers of the same subset (see closure theorem 6.2). Consequently, a strict Simon−Ando  partitioning

allows for only as many partitions are there are local optima, thus a two−peaked  landscape can only be

partitioned into two subsets, at least one of which has a large number of constituent microstates. This

does not permit a substantive reduction of state space unless there are a large number of peaks. Further-

more, because the within versus cross−partition  class communication rates for partitions of arbitrary

topology do not generally have closed form solutions, we proposed the use of Κ−ball  partitions to

simplify the aggregation calculations. As noted above, however, a generic landscape need not be parti-

tionable into Κ−balls  of fixed radius. It is necessary to allow partitions of varying radius, in many cases

including trivial "partitions" which consist of a single vertex. If  many such vertices remain in the com-

plement to the Κ−ball  partitioning, it becomes apparent that the original goal of an aggregate representa-

tion is only partially satisfied. 

Here we investigate the possibility of treating the "remainder" vertices in a landscape which is

not fully  partitionable as a self−contained  aggregate entity in its own right independent of its topology

or fitness distribution.What we propose below in preliminary form is a weaker version of Simon−Ando

decomposition that would allow one to make partitions around the optima and to have another partition

(or any number of partitions) corresponding to the low−fitness  genotypes separating the two peaks.

The somewhat less restrictive "block triangular" form discussed in Ando and Franklin (1963)

would still  impose the same constraints on landscape partitioning, while alternative aggregation of

variables techniques (such as the bounded aggregation methods of Courtois 1984, 1989) also don’t give

representations consistent with the partition classes and their complements used in our class of models.

Here we analyze a fitness landscapes with a matrix structure where part of the lattice is partitionable

into Simon−Ando  components while a substantial complement set of vertices remains which is not a

Simon−Ando  partition according to definition (6.1).

The classical view of Wrightean landscapes postulates low fitness "valleys" of arbitrary width

(with any number of steps separating high fitness regions). In this case, with a proper arrangement of

rows and columns, where an arbitrary number of diagonal "submatrices" are also of order Ε<<1
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Ε Ε Ε Ε E

y
{
zzzzzzzzzzzzzz = A* + ΕC

where E is a square matrix of order Ε values of arbitrary dimension, corresponding to a decompo-

sition A=A* +ΕC where A*  consists of block diagonal matrices up through the Kth partition and zeros

elsewhere.

Investigating the dynamical properties of operators with a structure consistent with (8.0) is

beyond the scope of this paper, but it  can be seen intuitively that there should be short term quasi−

equilibria  associated with each A as there were in the Simon−Ando  case, with the complication that

communication across the partition classes occurs via indirect paths through E rather than exclusively

through direct cross−class  communication. One can also consider the limiting case where there is no

direct communication between classes AI  and AJ
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H8.0 bL i
k
jjjjjjjjjjjjjjj
A1 0 0 0 Ε
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0 0 AI 0 Ε
0 0 0 ¸ Ε
Ε Ε Ε Ε E

y
{
zzzzzzzzzzzzzzz = A* + ΕC

so that any aggregate description of the cross−term  dynamics between A and A depends on the rate of

transit through the intermediate "valley."

On a final note, we return to an observation we made in the introduction, namely, that aggrega-

tion of variables (at least implicitly  or conceptually) has found numerous applications in evolutionary

biology. An approach in many ways complimentary to ours has been undertaken by a number of

groups  (Frenkel et al 2000, Watson 2002), where partitioning according to strong versus weak cou-

pling is used to represent epistatic interactions. In their case, the Simon−Ando   partitions correspond

not to clusters of genotypes but rather to clusters of interacting genes. Whether or not  there is between

decomposability of epistasis rules and landscape decomposability as defined in this paper remains to be

answered. 
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à Figure  Captions

Figure 1:

Shows a plot of the exact stationary distribution (uniform at 1/32 for each genotype) against the Simon−

Ando  eigenvector estimate for a 5 locus, 2 allele fitness landscape with every genotype fitness

W(x)=1.0. The 32 genotypes are arranged in the order of Boolean numbers, i.e. 00000,10000,...11111.-

The mutation rate per locus is set to 0.01. While the order of magnitude estimates are correct, the

Simon−Ando  approximation for any particular genotype deviates due to the fact that edge vertices in

each partition class are set as "boundaries" in the approximation.

Figure 2:

The following plots are for the mutation−selection  matrix induced by a bimodal fitness landscape. In a

5 locus, 2 allele system, the genotypes 00000 and 11111 have fitness values set to 1.0. The Hamming

distance one genotypes have a fitness of 0.9, while the Hamming distance two neighbors (with respect

to either peak) are set to 0.01. Mutation rate is again Μ=0.01.

a) This symmetric, bimodal fitness landscape has degenerate leading eigenvectors with identical Λ

=0.999 eigenvalues. The normalized degenerate eigenvectors are shown above.

b) The stationary distribution for this bimodal landscape is plotted against togehter with the estimated

distribution derived from the eigenvectors of the Simon−Ando  partition matrices.

Figure 3:

The fitness landscape is the same as the above, except that one peak was set to a lower fitness

(W(11111)=0.9, W(00000)=1.0) value to illustrate directional selection. The corresponding unimodal

leading eigenvector is closely approximated by Simon−Ando  aggregation.

Figure 4:

The fitness landscape in this set of computations has two peaks of almost equal fitness: W(00000)=1.0

and W(11111)=0.99. However, the peak with somewhat lower fitness has mutational neighbors with

fitness values approximately equal to 0.9 while the higher peak has single−point  mutational neighbors

with a fitness of about 0.1. The Hamming distance two neighbors with respect to both peaks are again

set to 0.01, with Μ set to 0.01. For this parameter range, the stationary distribution’s probability density

is concentrated about the more "mutationally robust" genotype, i.e. the one with the higher fitness

neighbors. While this pattern is qualitatively predicted using the Simon−Ando   approximation, it can be

seen from the graph that the prediction is rather poor.
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leading eigenvector is closely approximated by Simon−Ando  aggregation.

Figure 4:

The fitness landscape in this set of computations has two peaks of almost equal fitness: W(00000)=1.0

and W(11111)=0.99. However, the peak with somewhat lower fitness has mutational neighbors with

fitness values approximately equal to 0.9 while the higher peak has single−point  mutational neighbors

with a fitness of about 0.1. The Hamming distance two neighbors with respect to both peaks are again

set to 0.01, with Μ set to 0.01. For this parameter range, the stationary distribution’s probability density

is concentrated about the more "mutationally robust" genotype, i.e. the one with the higher fitness

neighbors. While this pattern is qualitatively predicted using the Simon−Ando   approximation, it can be

seen from the graph that the prediction is rather poor.
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