131 research outputs found

    Transition from one- to two-dimensional island growth on metal (110) surfaces induced by anisotropic corner rounding

    Get PDF
    We propose a kinetic model to describe the temperature dependence of the shape of islands formed during submonolayer epitaxy on anisotropic metal surfaces. Our model reveals that anisotropic corner rounding is the key atomic process responsible for a transition in island shape, from chain structures at lower temperatures, to compact islands at higher temperatures. Exploiting data for the temperature and flux scaling of the island density, we analyze such behavior observed experimentally in Cu/Pd(110) epitaxy, estimating activation barriers of 0.45 and 0.3 eV for anisotropic terrace diffusion, and 0.65 eV for the slow corner-rounding process

    Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field.

    Get PDF
    Plant secondary metabolites that are released into the rhizosphere alter biotic and abiotic soil properties, which in turn affect the performance of other plants. How this type of plant-soil feedback affects agricultural productivity and food quality in the field in the context of crop rotations is unknown. Here, we assessed the performance, yield and food quality of three winter wheat varieties growing in field plots whose soils had been conditioned by either wild type or benzoxazinoid-deficient bx1 maize mutant plants. Following maize cultivation, we detected benzoxazinoid-dependent chemical and microbial fingerprints in the soil. The benzoxazinoid fingerprint was still visible during wheat growth, but the microbial fingerprint was no longer detected. Wheat emergence, tillering, growth, and biomass increased in wild type conditioned soils compared to bx1 mutant conditioned soils. Weed cover was similar between soil conditioning treatments, but insect herbivore abundance decreased in benzoxazinoid-conditioned soils. Wheat yield was increased by over 4% without a reduction in grain quality in benzoxazinoid-conditioned soils. This improvement was directly associated with increased germination and tillering. Taken together, our experiments provide evidence that soil conditioning by plant secondary metabolite producing plants can increase yield via plant-soil feedbacks under agronomically realistic conditions. If this phenomenon holds true across different soils and environments, optimizing root exudation chemistry could be a powerful, genetically tractable strategy to enhance crop yields without additional inputs

    Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome.

    Get PDF
    Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities

    Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution

    Full text link
    The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. We used classical dense photometric lightcurves from several sources and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetics and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201

    First events from the CNGS neutrino beam detected in the OPERA experiment

    Get PDF
    The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode, through the study of nu_mu to nu_tau oscillations. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. In August 2006 a first run with CNGS neutrinos was successfully conducted. A first sample of neutrino events was collected, statistically consistent with the integrated beam intensity. After a brief description of the beam and of the various sub-detectors, we report on the achievement of this milestone, presenting the first data and some analysis results.Comment: Submitted to the New Journal of Physic

    Soil chemical and microbial gradients determine accumulation of root‐exuded secondary metabolites and plant–soil feedbacks in the field

    Get PDF
    Introduction: Harnessing positive plant–soil feedbacks via crop rotations is a promising strategy for sustainable agriculture. These feedbacks are often context-dependent, and how soil heterogeneity explains this variation is unknown. Plants influence soil properties, including microbes, by exuding specialized metabolites. Benzoxazinoids, specialized metabolites released by cereals such as wheat and maize, can alter rhizosphere microbiota and performance of plants subsequently growing in the exposed soils and are thus an excellent model to study agriculturally relevant plant–soil feedbacks. Materials and Methods: To understand local variation in soil properties on benzoxazinoid-mediated plant–soil feedbacks, we conditioned plots with wild-type maize and benzoxazinoid-deficient bx1 mutants in a grid pattern across a field, and we then grew winter wheat in the following season. We determined accumulation of benzoxazinoids, root-associated microbial communities, abiotic soil properties and wheat performance in each plot and then assessed their associations. Results: We detected a marked gradient in soil chemistry and microbiota across the field. This gradient resulted in significant differences in benzoxazinoid accumulation, which were explained by differential benzoxazinoid degradation rather than exudation. Benzoxazinoid exudation modulated microbial diversity in root and rhizospheres during maize growth, but not during subsequent wheat growth, while the chemical fingerprint of benzoxazinoids persisted. Averaged across the field, we did not detect feedbacks on wheat performance and defence, apart from a transient decrease in biomass during vegetative growth. Closer analysis, however, revealed significant feedbacks along the chemical and microbial gradient of the field, with effects gradually changing from negative to positive along the gradient. Conclusion: Overall, this study revealed that plant–soil feedbacks differ in strength and direction within a field and that this variation can be explained by standing chemical and microbial gradients. Understanding within-field soil heterogeneity is crucial for the future exploitation of plant–soil feedbacks in sustainable precision agriculture

    Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy.

    Get PDF
    BACKGROUND: Sporadic vascular malformations (VMs) are complex congenital anomalies of blood vessels that lead to stroke, life-threatening bleeds, disfigurement, overgrowth, and/or pain. Therapeutic options are severely limited, and multidisciplinary management remains challenging, particularly for high-flow arteriovenous malformations (AVM). METHODS: To investigate the pathogenesis of sporadic intracranial and extracranial VMs in 160 children in which known genetic causes had been excluded, we sequenced DNA from affected tissue and optimized analysis for detection of low mutant allele frequency. RESULTS: We discovered multiple mosaic-activating variants in 4 genes of the RAS/MAPK pathway, KRAS, NRAS, BRAF, and MAP2K1, a pathway commonly activated in cancer and responsible for the germline RAS-opathies. These variants were more frequent in high-flow than low-flow VMs. In vitro characterization and 2 transgenic zebrafish AVM models that recapitulated the human phenotype validated the pathogenesis of the mutant alleles. Importantly, treatment of AVM-BRAF mutant zebrafish with the BRAF inhibitor vemurafinib restored blood flow in AVM. CONCLUSION: Our findings uncover a major cause of sporadic VMs of different clinical types and thereby offer the potential of personalized medical treatment by repurposing existing licensed cancer therapies. FUNDING: This work was funded or supported by grants from the AVM Butterfly Charity, the Wellcome Trust (UK), the Medical Research Council (UK), the UK National Institute for Health Research, the L'Oreal-Melanoma Research Alliance, the European Research Council, and the National Human Genome Research Institute (US)

    Kinase inhibitors for the treatment of inflammatory and autoimmune disorders

    Get PDF
    Drugs targeting inhibition of kinases for the treatment of inflammation and autoimmune disorders have become a major focus in the pharmaceutical and biotech industry. Multiple kinases from different pathways have been the targets of interest in this endeavor. This review describes some of the recent developments in the search for inhibitors of IKK2, Syk, Lck, and JAK3 kinases. It is anticipated that some of these compounds or newer inhibitors of these kinases will be approved for the treatment of rheumatoid arthritis, psoriasis, organ transplantation, and other autoimmune diseases
    corecore