373 research outputs found

    Phase Diagrams of Forced Magnetic Reconnection in Taylor's Model

    Full text link
    Recent progress in the understanding of how externally driven magnetic reconnection evolves is organized in terms of parameter space diagrams. These diagrams are constructed using four pivotal dimensionless parameters: the Lundquist number SS, the magnetic Prandtl number PmP_m, the amplitude of the boundary perturbation Ψ^0\hat \Psi_0, and the perturbation wave number k^\hat k. This new representation highlights the parameters regions of a given system in which the magnetic reconnection process is expected to be distinguished by a specific evolution. Contrary to previously proposed phase diagrams, the diagrams introduced here take into account the dynamical evolution of the reconnection process and are able to predict slow or fast reconnection regimes for the same values of SS and PmP_m, depending on the parameters that characterize the external drive, never considered so far. These features are important to understand the onset and evolution of magnetic reconnection in diverse physical systemsComment: Comments: 13 pages, 2015 Workshop "Complex plasma phenomena in the laboratory and in the universe

    Two-fluid magnetic island dynamics in slab geometry: I - Isolated islands

    Full text link
    A set of reduced, 2-D, two-fluid, drift-MHD equations is derived. Using these equations, a complete and fully self-consistent solution is obtained for an isolated magnetic island propagating through a slab plasma with uniform but different ion and electron fluid velocities. The ion and electron fluid flow profiles around the island are uniquely determined, and are everywhere continuous. Moreover, the island phase-velocity is uniquely specified by the condition that there be zero net electromagnetic force acting on the island. Finally, the ion polarization current correction to the Rutherford island width evolution equation is evaluated, and found to be stabilizing provided that the anomalous perpendicular ion viscosity significantly exceeds the anomalous perpendicular electron viscosity

    The Framework of Plasma Physics

    Get PDF
    Plasma physics is a necessary part of our understanding of stellar and galactic structure. It determines the magnetospheric environment of the earth and other planets; it forms the research frontier in such areas as nuclear fusion, advanced accelerators, and high power lasers; and its applications to various industrial processes (such as computer chip manufacture) are rapidly increasing. It is thus a subject with a long list of scientific and technological applications. This book provides the scientific background for understanding such applications, but it emphasizes something else: the intrinsic scientific interest of the plasma state. It attempts to develop an understanding of this state, and of plasma behavior, as thoroughly and systematically as possible. The book was written with the graduate student in mind, but most of the material would also fit into an upper-level undergraduate course

    Homotopy Invariants and Time Evolution in (2+1)-Dimensional Gravity

    Full text link
    We establish the relation between the ISO(2,1) homotopy invariants and the polygon representation of (2+1)-dimensional gravity. The polygon closure conditions, together with the SO(2,1) cycle conditions, are equivalent to the ISO(2,1) cycle conditions for the representa- tions of the fundamental group in ISO(2,1). Also, the symplectic structure on the space of invariants is closely related to that of the polygon representation. We choose one of the polygon variables as internal time and compute the Hamiltonian, then perform the Hamilton-Jacobi transformation explicitly. We make contact with other authors' results for g = 1 and g = 2 (N = 0).Comment: 34 pages, Mexico preprint ICN-UNAM-93-1

    Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum

    Get PDF
    The influence of ocean circulation changes on atmospheric CO2 hinges primarily on the ability to alter the ocean interior's respired nutrient inventory. Here we investigate the Atlantic overturning circulation at the Last Glacial Maximum and its impact on respired carbon storage using radiocarbon and stable carbon isotope data from the Brazil and Iberian Margins. The data demonstrate the existence of a shallow well-ventilated northern-sourced cell overlying a poorly ventilated, predominantly southern-sourced cell at the Last Glacial Maximum. We also find that organic carbon remineralisation rates in the deep Atlantic remained broadly similar to modern, but that ventilation ages in the southern-sourced overturning cell were significantly increased. Respired carbon storage in the deep Atlantic was therefore enhanced during the last glacial period, primarily due to an increase in the residence time of carbon in the deep ocean, rather than an increase in biological carbon export

    Canonical Quantization of (2+1)-Dimensional Gravity

    Full text link
    We consider the quantum dynamics of both open and closed two- dimensional universes with ``wormholes'' and particles. The wave function is given as a sum of freely propagating amplitudes, emitted from a network of mapping class images of the initial state. Interference between these amplitudes gives non-trivial scattering effects, formally analogous to the optical diffraction by a multidimensional grating; the ``bright lines'' correspond to the most probable geometries.Comment: 22 pages, Mexico preprint ICN-UNAM-93-1

    Search for supernova-produced 60Fe in a marine sediment

    Full text link
    An 60Fe peak in a deep-sea FeMn crust has been interpreted as due to the signature left by the ejecta of a supernova explosion close to the solar system 2.8 +/- 0.4 Myr ago [Knie et al., Phys. Rev. Lett. 93, 171103 (2004)]. To confirm this interpretation with better time resolution and obtain a more direct flux estimate, we measured 60Fe concentrations along a dated marine sediment. We find no 60Fe peak at the expected level from 1.7 to 3.2 Myr ago. However, applying the same chemistry used for the sediment, we confirm the 60Fe signal in the FeMn crust. The cause of the discrepancy is discussed.Comment: 15 pages, 5 figures, submitted to PR

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density

    Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects

    Full text link
    The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, diamagnetic effects reduce the final width of the island. Unlike the electron density, the guiding center density does not tend to distribute along separatrices and at high ion temperature, the electrostatic potential exhibits the superposition of a small scale structure, related to the electron density, and a large scale structure, related to the ion guiding-center density
    • …
    corecore