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The linear and nonlinear evolution of magnetic reconnection in collisionless high-temperature

plasmas with a strong guide field is analyzed on the basis of a two-dimensional gyrofluid model.

The linear growth rate of the reconnecting instability is compared to analytical calculations over

the whole spectrum of linearly unstable wave numbers. In the strongly unstable regime (large D0),
the nonlinear evolution of the reconnecting instability is found to undergo two distinctive

acceleration phases separated by a stall phase in which the instantaneous growth rate decreases.

The first acceleration phase is caused by the formation of strong electric fields close to the X-point

due to ion gyration, while the second acceleration phase is driven by the development of an open

Petschek-like configuration due to both ion and electron temperature effects. Furthermore, the

maximum instantaneous growth rate is found to increase dramatically over its linear value for

decreasing diffusion layers. This is a consequence of the fact that the peak instantaneous growth

rate becomes weakly dependent on the microscopic plasma parameters if the diffusion region

thickness is sufficiently smaller than the equilibrium magnetic field scale length. When this

condition is satisfied, the peak reconnection rate asymptotes to a constant value. VC 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4821840]

I. INTRODUCTION

Magnetic reconnection is a fundamental plasma process

that changes the topology of the magnetic field lines and

results in the conversion of magnetic energy into kinetic

energy, thermal energy, and particle acceleration.1,2 It is

believed to be responsible for many of the most spectacular

and energetic phenomena in space and laboratory plasmas.

The most prominent examples include Earth magnetospheric

substorms,3 solar and stellar flares,4 coronal mass ejections,5

coronal heating,6 generation of energetic particles,7 sawtooth

crashes,8 and major disruptions in tokamak experiments.9

Conventional resistive magnetohydrodynamics (MHD)

models are able to account for magnetic reconnection, but

generally predict reconnection rates valid only for sufficiently

collisional plasmas. In the well-known Sweet-Parker model

of magnetic reconnection,10,11 the plasma resistivity g breaks

the frozen-in flux constraint in a narrow two-dimensional

boundary layer (the diffusion region) allowing magnetic field

lines to reconnect. However, the elongated diffusion region

distinctive of this model limits the rate of reconnection due to

the Alfv�en limit on the ion outflow velocity. In fact, assuming

steady-state reconnection in an incompressible plasma, the

continuity equation yields the following relation for the

inflow velocity into the diffusion region

vin �
dSP

D
vA;up � vA;up; (1)

with dSP and D being, respectively, the small width ð/ g1=2Þ
and the macroscopic length12 of the diffusion region, and

vA,up being the Alfv�en speed based on the reconnecting com-

ponent of the magnetic field just upstream of the diffusion

region. Since dSP � D, the reconnection rate given in Eq. (1)

is small and generally inconsistent with the observed fast

energy release that characterizes many magnetic reconnec-

tion events.8,13–15 At small values of resistivity, the develop-

ment of secondary islands (plasmoids) eventually fragments

the diffusion region yielding higher reconnection rates.16–23

In contrast, in the classical Petschek model of magnetic

reconnection,24 the outflow region forms an open (X-type)

configuration, leaving a relatively short diffusion region D in

Eq. (1), and therefore, greatly enhancing the reconnection

rate. However, numerical simulations showed that the open

Petschek outflow geometry cannot be sustained in a model

with a spatially uniform resistivity.25 An inhomogeneous

resistivity that increases sharply in the reconnection layer

facilitates a Petschek-like reconnection configuration,26 but

the establishment and role of such anomalous resistivity dur-

ing magnetic reconnection are not yet well understood.

In addition to the issues discussed so far, there is a

further comment to be made about the reconnection rates

predicted by the Sweet-Parker and Petschek models. Since

these models are steady-state, they can provide only one

time scale, that of steady-state reconnection, which is pro-

portional to S1=2 for Sweet-Parker and ln S for Petschek,

where S ¼ l0DvA;up=g is the Lundquist number and l0 is the

vacuum permeability. In contrast, reconnection in nature is

generally not a steady-state process, but rather a dynamical

one. In particular, there are many magnetic reconnection

phenomena in laboratory as well as space and astrophysical

plasmas where the dynamics exhibits an impulsive behav-

iour, i.e., a sudden increase in the time derivative of the

reconnection rate.15,27,28 This is often referred to as thea)Electronic mail: luca.comisso@polito.it
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“onset problem,” which addresses why the magnetic field

configuration evolves slowly for a long period of time, only

to undergo an abrupt dynamical change over a much shorter

period of time.29–31 It is therefore necessary to move beyond

the steady-state models in order to explain the dynamics of

fast magnetic reconnection phenomena. A significant step

forward, aimed at understanding fast sawtooth crashes in

tokamaks, was obtained when Aydemir showed, by means of

numerical simulations, that in strongly unstable semicolli-

sional/collisionless regimes, a relatively slow initial phase of

the reconnection process is followed by a dramatic accelera-

tion caused by electron pressure gradients.32 Aydemir’s

results were corroborated one year later by Wang and

Bhattacharjee,33 while Ottaviani and Porcelli34 showed that

electron inertia, by itself, can lead to growth rates faster-

than-exponential in time. It is important to note that in these

works the nonlocal ion response was neglected since it was

believed that the two-fluid theory was adequate to properly

describe the reconnection dynamics.35 In the present paper,

we show that including the correct gyrofluid response does

make a difference. In particular, we have found that more

than one nonlinear acceleration is possible when ion gyration

effects are taken into account. We will give numerical and

analytical evidence that the qualitative difference between

hot and cold ion reconnection is linked to the formation

of strong electric fields due to ion gyration effects.

Furthermore, we will discuss how the microscopic plasma

parameters affect both the slow initial phase and the fast

nonlinear phase of the reconnection process.

We are interested in the regime of rarefied high-

temperature plasmas in which the collisional mean free path

is large enough that classical Coulomb collisions are negligi-

ble. Because of the relevance in many cases of physical

interest, we consider magnetic reconnection phenomena that

take place in a two-dimensional plane perpendicular to a

strong and essentially uniform component of the magnetic

field, the so-called “guide field.” The presence of this strong

background magnetic field creates a spatial anisotropy that

makes it possible to exploit the ordering kk � k?, where kk
and k? are the typical wave numbers of the fluctuation spec-

trum in the direction parallel and perpendicular to the equi-

librium magnetic field. The reconnecting component of the

magnetic field is small compared to the total magnetic field

strength. More generally, the amplitude of the fluctuating

fields is assumed to be small, while their perpendicular gra-

dients can be comparable to or larger than those of the equi-

librium fields. Moreover, the strong guide field ensures that

the time variations associated with reconnection are slow

compared to the ion gyro-period. These features are neces-

sary to adopt a gyrofluid approach to the study of magnetic

reconnection. The gyrofluid choice allows us to investigate

ion and ion-sound Larmor radius effects (that cannot be

neglected in high-temperature plasmas) within the frame-

work of a generalized fluid model, which is computationally

less expensive and physically more intuitive than a kinetic

one. The model equations are presented in Sec. II, while in

the subsequent sections this gyrofluid model is used to study

magnetic reconnection in a current sheet. Finally, the most

relevant results are summarized in the concluding section.

II. MODEL EQUATIONS

As discussed in Sec. I, we are interested in a model that

can describe two-dimensional magnetic reconnection phe-

nomena in collisionless high-temperature plasmas embedded

in a strong and uniform magnetic field. For this purpose, we

consider an isothermal gyrofluid model that can be obtained

from the equations of Ref. 36 by neglecting magnetic curva-

ture effects and assuming that all the fields are translationally

invariant along the direction of the strong guide field B0ẑ,

which is perpendicular to the reconnection plane. The pres-

sure is assumed to be scalar for both the electrons and the

ions, and the electron inertia provides the mechanism for

breaking the frozen-in flux constraint. A right-handed

Cartesian coordinate system (x, y, z) is adopted, and a plasma

with single ion species and charge number Z¼ 1 is assumed.

We adopt a normalization scheme such that all the

lengths are normalized to a characteristic equilibrium mag-

netic field scale length L, and all times to the Alfv�en time

sA ¼ L=vA, where vA ¼ B0=ðl0n0miÞ1=2
, with n0 indicating a

constant background density and mi the ion mass. Thus, de-

pendent variables are normalized in the following way:

ðn̂i; n̂e; ûi; ûe; ŵ; /̂Þ ¼
L

di

ni

n0

;
L

di

ne

n0

;
L

di

ui

vA
;
L

di

ue

vA
;

w
B0L

;
/

B0LvA

� �
;

(2)

where dimensionless quantities appear on the left hand side.

Hereafter, the carets denoting normalized quantities will be

omitted for simplicity of notation. The fields ni and ui ¼ ẑ � �vi

represent the perturbed density and the out-of-plane velocity

of the ion guiding centers, whereas ne and ue ¼ ẑ � ve are the

perturbed density and the out-of-plane velocity of the elec-

trons. We indicate with w ¼ ẑ � A the in-plane magnetic flux

function of a magnetic field

B ¼ ẑ þrw� ẑ; (3)

where A is a vector potential. The electrostatic potential is

denoted by /, hence the electric field can be expressed as

E ¼ � @w
@t

ẑ �r/: (4)

The evolution equations of our model consist of the con-

tinuity equation and the z-component of the equation of

motion for the ion guiding centers

@ni

@t
þ ½U; ni� ¼ ½W; ui�; (5)

@

@t
ðWþ d2

i uiÞ þ ½U;Wþ d2
i ui� ¼ q2

i ½W; ni�; (6)

and similar equations for the electrons, where the vanish-

ingly small electron Larmor radius limit qe ! 0 is taken

@ne

@t
þ ½/; ne� ¼ ½w; ue�; (7)

@

@t
ðw� d2

e ueÞ þ ½/;w� d2
e ue� ¼ �q2

s ½w; ne�: (8)
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The symbol ½�; �� denotes the canonical Poisson bracket, so

that ½f ; g� � ẑ � ðrf �rgÞ for two generic fields f and g,

whereas the four dimensionless parameters appearing in the

above equations are the (normalized) electron and ion skin

depth, de ¼ ðc=xpeÞ=L and di ¼ ðc=xpiÞ=L, respectively,

and the (normalized) ion and ion-sound Larmor radius,

qi ¼ ðvti=xciÞ=L and qs ¼ ðcse=xciÞ=L, respectively. Here,

cse ¼ ðTe=miÞ1=2
is the sound speed based on the electron

temperature, vti ¼ ðTi=miÞ1=2
is the ion thermal speed, and

the other symbols have their usual meaning. Furthermore,

U ¼ C1=2
0 /; W ¼ C1=2

0 w (9)

are the gyro-averaged / and w, where the symbol C1=2
0 refers

to the gyro-averaged operator introduced by Dorland and

Hammet37 that we adopt in its lowest-order Pad�e approxim-

ant form

C1=2
0 ¼ 1

1� q2
i

2
r2
?

; (10)

which is valid for arbitrary k2
?q

2
i . Note that the ion guiding

centers do not respond to the local electromagnetic field but

to the field averaged over its gyro-orbit. Therefore, the ion

guiding centers are advected by their nonlocal value of the

electric drift, related to the gyro-averaged electrostatic

potential according to �vE ¼ ẑ �rU. Since the present

model neglects the electron Larmor gyration, the electrons

are instead advected by their local value of the electric drift

vE ¼ ẑ �r/.

Equations (5)–(8) are closed by the z-component of

Ampère’s law

r2
?w ¼ �j ¼ �C1=2

0 ui þ ue; (11)

where j ¼ ẑ � J is the out-of-plane current density, and by

imposing quasi-neutrality on the particle density (not the

guiding-center density)

ne ¼ C1=2
0 ni þ

C0 � 1

q2
i

� �
/; (12)

with C0 ¼ ðC1=2
0 Þ

2
. In the above equation, the term C1=2

0 ni is

the gyrophase-independent part of the real space ion particle

density, whereas the term ðC0 � 1Þ/=q2
i , which arises from

the gyrophase-dependent part of the distribution function,

represents the polarization density due to the variation of

the electric field around a gyro-orbit.

The evolution equations of the model conserve the

following energy integral:

H ¼ 1

2

ð
D

d2xðjrwj2 þ d2
i u2

i þ d2
e u2

e þ q2
i n2

i

þ q2
s n2

e þ Uni � /neÞ; (13)

where we have used Ampère’s law and the quasi-neutrality

equation to simplify the result. Here, D denotes the spatial

domain of interest, and the boundary conditions have been

assumed to be such that the surface integrals vanish. The

successive terms in the functional (13) represent, respec-

tively, the magnetic energy, the z-component of the ion and

electron kinetic energies, the ion and electron thermal ener-

gies, and the electrostatic energy of the ions and electrons.

Taking the energy functional as the Hamiltonian of our

4-field model, the set of Eqs. (5)–(8) can be cast into nonca-

nonical Hamiltonian form

@vi

@t
¼ fvi;Hg; i ¼ 1; :::; 4; (14)

where vi are suitable field variables and f�; �g is the nonca-

nonical Poisson bracket consisting of a bilinear, antisymmet-

ric form satisfying the Leibniz rule and the Jacobi identity.

Adopting ni, D � Wþ d2
i ui; ne, and F � w� d2

e ue as field

variables, i.e., v � ðni;D; ne;FÞ, the noncanonical Poisson

bracket found in Ref. 36 in the limit of no magnetic curva-

ture and @=@z ¼ 0 reduces to

fC;Gg ¼
ð
D

d2xðnið�½Cni
;Gni
� � q2

i d2
i ½CD;GD�Þ

þ neð½Cne ;Gne � þ q2
s d2

e ½CF;GF�Þ

þDð�½Cni
;GD� � ½CD;Gni

�Þ

þ Fð½CF;Gne � � ½Cne ;GF�ÞÞ (15)

for two generic functionals C and G, with subscripts indicat-

ing functional derivatives. Noncanonical Poisson brackets

are characterized by the presence of Casimir invariants (see,

e.g., Ref. 38), which are defined as non-zero functionals C of

the field variables that satisfy the relation fF;Cg ¼ 0 for any

functional F of the field variables. Given that, in particular,

they commute with any Hamiltonian functional, Casimir

invariants are constants of motion for the system. In the case

of the bracket (15), the following four infinite families of

Casimirs invariants can be obtained:

C1 ¼
ð
D

d2xfþðDþ diqiniÞ; C2 ¼
ð
D

d2xf�ðD� diqiniÞ;

C3 ¼
ð
D

d2xgþðFþ deqsneÞ; C4 ¼
ð
D

d2xg�ðF� deqsneÞ;

(16)

where f6 and g6 represent arbitrary functions of their argu-

ments. The form of the Casimirs (16) suggests the introduc-

tion of a new set of variables

I6 � D6diqini; G6 � F6deqsne; (17)

in terms of which Eqs. (5)–(8) can be rewritten in the follow-

ing form of advection equations:

@I6

@t
þ ½U6; I6� ¼ 0;

@G6

@t
þ ½/6;G6� ¼ 0; (18)

where

U6 � U7
qi

di
W; /6 � /6

qs

de
w (19)
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are the stream functions of the velocity fields

�v6 ¼ ẑ �rU6 and v6 ¼ ẑ �r/6, which advect the fields

I6 and G6, respectively. The form of Eqs. (18) makes it

clear that the conserved fields associated with the Casimirs

preserve their initial topology. In Ref. 39, it was shown that

the investigation of these Lagrangian invariant fields helps to

understand how the reconnection evolution is affected by the

plasma b and by the ratio of species temperatures.

The set of gyrofluid equations presented in this section

describe the low-frequency dynamics ðx� xci; kvAÞ of

low-b plasmas ðb� 1Þ in the presence of a strong guide

field ðB0 	 B?Þ, and thus by assumption exclude whistler

and compressional Alfv�en waves. Here, the total plasma beta

is b ¼ be þ bi, where the electron and ion beta are defined as

be;i � 2l0n0Te;i=B2
0. Both the inertial ðbe � 2me=miÞ and the

kinetic ðbe 	 2me=miÞ Alfv�en wave regimes are described

(see Appendix), whereas for be � 2me=mi (corresponding to

vte � vA), the model equations need to be extended to

account for the electron Landau damping.40 Since resistivity

is neglected, the validity of the model requires also that the

time scales of interest are shorter than the electron-ion colli-

sion time ðx	 �eiÞ.

III. EQUILIBRIUM CONFIGURATION

In order to investigate the evolution of magnetic recon-

nection instabilities, the system of Eqs. (5)–(12) is solved

numerically considering an equilibrium which is linearly

unstable with respect to tearing (or “reconnecting”) modes,

which tear and reconnect the magnetic field at their associ-

ated resonant surfaces defined by k � Beq ¼ 0, where k is

the wave vector of the mode and Beq is the equilibrium mag-

netic field. In particular, we adopt the following static

equilibrium:

ni;eqðxÞ ¼ ne;eqðxÞ ¼ neq; ui;eqðxÞ ¼ 0;

weqðxÞ ¼
X11

n¼�11

f̂ neinx; (20)

where neq represents a uniform, nondrifting background

density, and f̂ n are the Fourier coefficients of the function

f ðxÞ ¼ A0

cosh2 x

L

� � ; (21)

with L¼ 1 and A0 representing a parameter that determines

the strength of the in-plane equilibrium magnetic field. In

the following, we consider A0¼ 0.1, so that maxjBy;eqj=B0


 0:08. Moreover, if we define the equilibrium magnetic

shear length as Ls ¼ B0=ðdBy;eq=dxÞ evaluated at the resonant

surface x¼ 0, choosing L¼ 1 and A0¼ 0.1 implies Ls¼ 5.

The fields of the model are decomposed in a time inde-

pendent equilibrium and an evolving perturbation that is

advanced in time according to a third order Adams-Bashforth

algorithm. Double periodic boundary conditions are imposed

and a pseudospectral method is used in a domain

fðx; yÞ : �p � x < p;�ap � y < apg, with a resolution up

to 4096� 512 grid points. Numerical filters are introduced

acting only on typical length scales much smaller than any

other physical length scale of the system. These filters smooth

out the small spatial scales below a chosen cutoff, while leav-

ing unchanged the large scale dynamics even on long times,

as described in Ref. 41.

Note that the parameter a fixes the domain length along

the y-direction, Ly, which in turn is linked to the linear tear-

ing stability index D0 of our equilibrium. Indeed, for

weqðxÞ ¼ A0=cosh2x the following analytic form for D0 can

be obtained:42

D0 � lim
�!0

d lnwL

dx

���
þ�
�d lnwL

dx

���
��

� �
¼2
ð3þk2

yÞð5�k2
yÞ

k2
y

ffiffiffiffiffiffiffiffiffiffiffiffi
4þk2

y

q ; (22)

where wL is the ideal MHD magnetic flux eigenfunction,

� denotes the distance from the resonant surface located

at x¼ 0, and ky ¼ 2pm=Ly is the wave number, with m posi-

tive integer. Modes are destabilized if D0 > 0,43 i.e., when

ky <
ffiffiffi
5
p

for our equilibrium. Domain boundary effects can

lead to a modification of the expression for the tearing stabil-

ity index, however, for the equilibrium (20) our choice of the

domain size in the x-direction is sufficient to avoid these

effects, as shown in Fig. 1, where the curve of the analytical

expression (22) (blue solid line) is almost indistinguishable

from that of the numerical solution with a domain �p � x
� p (red dashed line).

The reconnecting instability is initiated by perturbing

the equilibrium with a small disturbance on the out-of-plane

current density of the form djðx; yÞ ¼ djðxÞcosð2py=LyÞ,
where djðxÞ is a function localized within a width of the

order de around the rational surface x¼ 0.

IV. LINEAR PHASE

The linear phase of the reconnecting instability is inves-

tigated by comparing the gyrofluid growth rates with analyti-

cal calculations over a range of parameters such as D0; Ti=Te,

and b, with and without taking into account ion acoustic

waves. We focus on high-temperature plasmas characterized

by q2
s 	 d2

e , i.e., b	 2me=mi, where

FIG. 1. Linear tearing stability index D0 as a function of the wave number

ky. The blue solid line refers to the analytical expression (22), whereas the

red dashed line corresponds to the numerical solution with a domain

�p � x � p.
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qs ¼
cs=xci

L
¼ qs 1þ Ti

Te

� �1=2

¼ di
b
2

� �1=2

; (23)

with cs ¼ ððTe þ TiÞ=miÞ1=2
being the sound speed based on

both the electron and ion temperatures. In this regime, the

linear dispersion relation of collisionless tearing modes was

obtained analytically in Ref. 44 by adopting boundary layer

and asymptotic matching techniques. The dispersion relation

derived in this work is based on a two-fluid model in which

electrons are assumed to be isothermal within the tearing

layer. This is a valid approximation if c2
L � k2

kv
2
te, where cL

is the linear growth rate of the mode, vte ¼ ðTe=meÞ1=2
is

the electron thermal velocity, and kkðxÞ ¼ kyBy;eqðxÞ=Beq


 kyx=Ls within the tearing layer. Finite ion Larmor radius

effects have been included by adopting a Pad�e approxima-

tion of the ion response which is valid for arbitrary k?qi,

while the ion acoustic wave dynamics have been ignored by

assuming c2
L 	 k2

kc
2
s . In particular, it was shown that as long

as diamagnetic effects can be neglected under the assump-

tion cL 	 x�e;i, where x�e;i are electron/ion diamagnetic

drift frequencies, the dispersion relation of the collisionless

tearing mode in the relevant limit qs > de and ĉ < qs is

p
2

ĉ2 ¼ qskH þ
q2

sde

ĉ
; (24)

where ĉ ¼ cL=ðkyB0y;eqÞ, with B0y;eq ¼ dBy;eq=dx evaluated at

the resonant surface. The parameter kH is a measure of the

potential energy that is available outside the tearing layer,

and is linked to the linear tearing stability index by the rela-

tion kH ¼ �p=D0. Therefore, Eq. (24) can be rewritten as

c3
L

k3
y B03y;eq

¼ 2

p
deq

2
s 1� cL

kyB0y;eq

p
qsdeD0

� �
: (25)

In the limit D0qs
1=3de

2=3 	 1, or more conservatively

deD0 	 1, the above dispersion relation reduces to

cL ¼ kyB0y;eq

2

p

� �1=3

de
1=3qs

2=3; (26)

while in the limit D0qs
1=3de

2=3 � 1, neglecting the left-hand

side of Eq. (25), we obtain

cL ¼ ky

B0y;eq

p
deqsD

0: (27)

Note that for q2
s � d2

e , equivalent to b� 2me=mi, the ion

effects are negligible and the electron response within

the tearing layer is expected to be adiabatic with c2
L 	 k2

kv
2
te

for jxj�de. Hence Eq. (25) is not valid anymore, and the

dispersion relation becomes45 cL ¼ kyB0y;eqde in the limit

deD0 	 1, while it yields46 cL ¼ 0:22kyB0y;eqde
3D02 in the

limit deD0 � 1.

Recently, two careful studies47,48 have compared the lin-

ear growth rates obtained from gyrokinetic simulations to the

analytic dispersion relation of collisionless tearing modes in

the large D0 (small ky) and small D0 (large ky) regimes (see

also the recent hybrid simulations in Ref. 49). Here, we

consider also the intermediate D0 regime by numerically

solving the complete dispersion relation, Eq. (25), and com-

paring it to the gyrofluid growth rates over the whole linearly

unstable ky-spectra. The analytic results are shown as solid

lines in Figs. 2–4, while the results obtained from gyrofluid

simulations are interpolated with dashed lines. Different Ti/

Te ratios are considered in order to evaluate the temperature

dependence of the linear growth rate. Fig. 2 refers to the

following plasma parameters: de ¼ 0:1; di ¼ 1; qs ¼ 0:2;
qi ¼ f10�5; 0:2; 0:4g. The choice of the electron and

ion skin depth has led to an artificial electron to ion mass

ratio, me=mi ¼ ðde=diÞ2 ¼ 10�2, but on the other hand has

allowed to reduce the computational resources. Since

qs ¼ diðbe=2Þ1=2
, then be and Te are held fixed in all cases,

while the scanning of qi ¼ qsðTi=TeÞ1=2
has the effect of

varying Ti as well as bi. Fig. 2 shows that tearing modes are

unstable for ky <
ffiffiffi
5
p

, i.e., for D0 > 0, and their growth rate

increases with the ion temperature. However, the growth

rates obtained from gyrofluid simulations have a weaker

dependence on Ti/Te and bi than the analytic theory. An even

lower sensitivity to Ti/Te and bi was found in the gyrokinetic

calculations of Refs. 47 and 48, where a good agreement

with the relations (26) and (27) was found for low-b plasmas,

whereas for the cases with b � 1 and Ti�Te, the analytic

theory cannot confirm their results since its validity requires

b < 2ðme=miÞ1=4
. In the low-b regimes considered here, we

find a very close agreement with the analytic dispersion

relation in the small and large D0 regimes, corresponding to

the extreme right and left regions of Fig. 2, respectively. The

apparent discrepancy in the intermediate D0 regime is

resolved for lower de (and qs) values, as shown in Fig. 3.

This is due to the fact that the analytic theory is based on

asymptotic matching techniques that are increasingly accu-

rate for thinner width layers.

The maximum linear growth rate cL;max and the corre-

sponding wave number ky;max lie between the small and large

D0 regimes. Approximate relations for cL;max and ky;max can

thus be found by balancing Eqs. (26) and (27). This gives

FIG. 2. Linear growth rate cL as a function of the wave number ky for the

equilibrium specified in Sec. III and the following plasma parameters:

de ¼ 0:1; di ¼ 1; qs ¼ 0:2, and qi ¼ ðTi=TeÞ1=2qs ¼ f10�5; 0:2; 0:4g.
Different colors refer to Ti=Te � 1 (purple, bottom two lines), Ti/Te¼ 1 (or-

ange, middle two lines), and Ti/Te¼ 4 (red, upper two lines). The dots are

values obtained from the numerical solution of the gyrofluid model, whereas

the solid lines are the solution of Eq. (25).
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D0max � ð2p2Þ1=3de
�2=3qs

�1=3; (28)

which leads to ky;max if a known relationship between D0max

and ky;max exists, as is the case of the equilibrium described

in Sec. III. We obtain a great analytic simplification by

adopting the approximation D0 
 15=k2
y , which gives a good

representation of Eq. (22) for ky�1, as we expect to be the

case for ky ¼ ky;max. Therefore, for the fastest growing mode,

we obtain the relations

ky;max �
ffiffiffiffiffi
15
p
ð2p2Þ�1=6de

1=3qs
1=6; (29)

cL;max �
ffiffiffiffiffi
15
p 2

p4

� �1=6

B0y;eqde
2=3qs

5=6: (30)

From the results of the gyrofluid simulations shown in Fig. 2,

we find that relation (29) provide a very good estimate of

ky;max, with a discrepancy never larger than 4%, while rela-

tion (30) slightly overestimate the numerical results by a fac-

tor between 1.6 and 2.

We note that the effect of out-of-plane ion compressibil-

ity is retained in the gyrofluid model, thereby enabling the

description of ion acoustic waves, which are not treated in

the analytic theory discussed so far. In order to assess their

role in the reconnection dynamics, we also consider the case

in which ion acoustic waves are removed from the gyrofluid

model by taking the limit di !1. Eq. (6) then becomes

@ui

@t
þ ½U; ui� ¼ 0; (31)

which imply that the out-of-plane velocity of the ion guiding

centers remains unchanged as time advances if ui¼ 0 at

t¼ 0, as is the case of the equilibrium configuration specified

in Sec. III. As a consequence, the z-component of Ampère’s

law reduces to r2
?w ¼ �j ¼ ue. Hence Eqs. (5), (7), and (8)

become

@ni

@t
þ ½U; ni� ¼ 0; (32)

@ne

@t
þ ½/; ne� ¼ ½w;r2

?w�; (33)

@

@t
ðw� d2

er2
?wÞ þ ½/;w� d2

er2
?w� ¼ �q2

s ½w; ne�; (34)

which are the same evolution equations of the three-field

gyrofluid model50 investigated in Refs. 51 and 52, where ion

acoustic wave dynamics was neglected. Therefore, setting

di¼ 106, we find a closer agreement with the growth rates

obtained from Eq. (25), as it is shown in Fig. 4. Moreover, a

comparison between the gyrofluid growth rates in Figs. 2

and 4 allow us to quantify the effect of the ion acoustic

waves on the tearing mode instability. We find that ion com-

pressibility effects lead to a reduction of the growth rate over

the whole range of linearly unstable wave numbers, with a

greater impact in the intermediate D0 regime for the largest b
value considered here. Even so, the discrepancy between the

cases with and without ion compressibility effects is never

larger than 8%. Ion acoustic wave coupling should become

important for b � 1, which however do not belong to the

regime of validity of both the gyrofluid model and the ana-

lytic theory.

V. NONLINEAR PHASE

In the investigation of the nonlinear evolution of the

reconnecting instability, we restrict ourselves to the strongly

unstable regime (large D0), which is relevant to the general

problem of fast magnetic reconnection. According to this

choice, we set Ly ¼ 4p, which leads to D0 ¼ 59:9 for the lon-

gest wavelength mode in the system ky ¼ 2p=Ly ¼ 1=2. We

again consider high-temperature plasmas characterized by

b	 2me=mi, and we study the effects of the plasma parame-

ters ðde;i; qs;iÞ on the reconnection dynamics. Since the

model of Eqs. (5)–(12) is dissipationless, we stop our simula-

tions at a time when the microscopic structures associated

with the reconnection process have become so narrow that

they can no longer be resolved by our truncated Fourier

expansion.

FIG. 3. Linear growth rate cL as a function of the electron skin depth de for the

wave number ky¼ 1. Plasma parameters are such that di=de ¼ ðmi=meÞ1=2

¼ 10; qs=di ¼ ðbe=2Þ1=2 ¼ 0:2, and qi=di ¼ ðbi=2Þ1=2 ¼ f10�5; 0:2; 0:4g.
The equilibrium configuration, as well as the notation, is the same as in Fig. 2.

FIG. 4. Linear growth rate cL as a function of the wave number ky for

di¼ 106 (this choice identifies the case di !1, which has the effect of

removing ion acoustic waves). Other plasma parameters and the equilibrium

configuration are the same as in Fig. 2. Even the notation is the same, except

that the values obtained from gyrofluid simulations are here denoted by

empty circles.
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Fig. 5 shows the evolution of magnetic reconnection in

the strongly unstable collisionless regime for the following

plasma parameters: de ¼ 0:2; di ¼ 2; qs ¼ 0:4; qi ¼ 0:8. In

panel (a) it is shown the time evolution of the reconnected

flux at the X-point, dwX ¼ jwð0; 0; tÞ � weqð0Þj, and that of

the first ten modes,
Ð

dxdwmðx; tÞ. The m > 1 modes develop

due to the coupling of the mode initially exited (m¼ 1).

Indeed, at t¼ 150, we find that the growth rate for the m > 1

modes shown here is cm>1 
 mcm¼1, in agreement with the

predictions based on the quasilinear theory. Panel (b) shows

the effective growth rate of the reconnecting instability,

c ¼ dðlndwXÞ=dt, as a function of time. From this plot, we

can clearly see that after an initial transient (0), magnetic

reconnection evolves through three different stages: the lin-

ear phase (I), scaling as ect, with c 
 0:0401, followed by the

faster-than-exponential phase (II), during which the effective

growth rate increases up to a peak value c 
 0:0751, and

finally the saturation period (III) in which the growth rate

slows down to zero as the reconnection is completed. We

observe that the saturation occurs in spite of the energy con-

servation property of the Hamiltonian system. This happens

because while the reconnecting instability develops, part of

the magnetic energy is transferred from the large spatial

scales towards the small scales, which are averaged out

when the new coarse-grained stationary magnetic configura-

tion is established.53

A similar evolution of the growth rate was presented for

the first time in a landmark paper by Aydemir.32 In his work,

he considered the effects of finite qs, but not those related to

qi since he focused on the limit Ti=Te ! 0. Subsequent

studies33,34,42,55–59 have confirmed that in the strongly unsta-

ble regime, the reconnecting instability undergoes one non-

linear acceleration with an instantaneous growth rate that is

faster-than-exponential in time also when the nonlocal

effects related to qi are taken into account.39,60–62 In the fol-

lowing, extending our preliminary results,63 we will show

how this picture changes when considering hot ions ðqi � deÞ
and also a diffusion region thickness (both the electron and

ion diffusion regions) that is effectively much smaller than

the equilibrium magnetic field scale length ðde; qs � LÞ, as

is expected to be the case in most of space and laboratory

plasmas.64,65 Indeed, decreasing de while keeping constant

FIG. 5. (a) Semi-log plot of the time evolution of the reconnected flux at the

X-point dwX (black solid line) and the first 10 modes: m¼ 1 (red long-

dashed line), m¼ 2 (blue short-dashed line), m¼ 3 (green dashed-dotted

line), m¼ 4 (orange three dotted-dashed line), and m ¼ 5; :::; 10 (black dot-

ted lines). Plasma parameters of this simulation are: de ¼ 0:2; di ¼ 2;
qs ¼ 0:4; qi ¼ 0:8. The system size in the y-direction is Ly ¼ 4p, therefore,

D0 ¼ 59:9 for the longest wavelength mode in the system. (b) Effective

growth rate of the reconnecting instability, c ¼ dðln dwXÞ=dt, as a function

of time. After an initial transient (0), three main stages can be identified: the

linear phase during which the growth rate is exponential (I), the super-

exponential phase (II), and finally the saturation phase during which the

growth rate slow down to zero as the reconnection is completed (III).

FIG. 6. Effective growth rate of the reconnecting instability,

c ¼ dðln dwXÞ=dt, as a function of time, for (a) de ¼ 5� 10�2; di ¼ 0:5;
qs ¼ 0:1; qi ¼ 0:2, and (b) de ¼ 2:5� 10�2; di ¼ 0:25; qs ¼ 5� 10�2;
qi ¼ 0:1. Both cases have the same mi=me; be; bi;Te; Ti, and equilibrium

configuration as in Fig. 5. After the initial transient (0), the reconnecting

instability is seen here to evolve through five main stages: the linear phase

(I), the first faster-than-exponential phase (II), the stall phase during which

the growth rate slow down (III), the second faster-than-exponential phase

(IV), and the saturation phase (V).
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the values of mi=me; be; bi, Te, Ti, we find that the nonlinear

evolution of collisionless magnetic reconnection shows a

novel behaviour, as shown in Fig. 6. Nonlinearly, the instan-

taneous growth rate is characterized by two distinct phases

of strong increase, separated by a stall phase in which the

growth rate decreases. Furthermore, the enhancement of the

peak effective growth rate over its linear value increases

with decreasing de values, as can be seen by comparing

Figs. 6(a) and 6(b). We will come back later on this point,

and we focus now on the nonlinear evolution of the recon-

nection process.

To distinguish ion gyration effects from those related to

the electron out-of-plane compressibility, qi and qs are

varied while keeping qs ¼ ðq2
s þ q2

i Þ
1=2 ¼ const. With the

choices ðqi; qsÞ ¼ fð0:2236; 10�5Þ; ð10�5; 0:2236Þg, we

obtain the same qs as in Fig. 6(a). The corresponding evolu-

tions of the instantaneous growth rate are shown in Figs. 7(a)

and 7(b). The first acceleration phase is present only in the

hot ion case, and is found to begin at t 
 450, which corre-

sponds to a full island width w 
 de ¼ 0:05. Conversely,

when ions are cold the early acceleration is absent. This dif-

ferent behaviour can be explained by looking at the field

structures around the X-point (a saddle point in w) for the

two cases. Fig. 8 shows a zoom around the X-point of the iso-

lines of the fields w and / at t¼ 600. At this stage of the

reconnection process, the island widths are of the same

order, but the hot ion case is characterized by a greater

opening of the magnetic island separatrix that allows for a

wider outflow region.39 Moreover, in the large ion Larmor

radius case, vE ¼ ẑ �r/ converges toward the X-point

leading to much smaller structures. Similar patterns of the

field / were shown also in Ref. 60, however, the length scale

separation was not sufficient to identify more than one non-

linear acceleration. To make the comparison between the hot

and cold ion cases more quantitative, in Fig. 9 it is shown the

FIG. 7. Effective growth rate of the reconnecting instability, c ¼ dðln dwXÞ=dt,
as a function of time, for (a) qs ¼ 10�5; qi ¼ 0:2236 (red line), and (b)

qs ¼ 0:2236; qi ¼ 10�5 (blue line). The equilibrium configuration and the

other plasma parameters are the same as in Fig. 6(a). The effective growth rate

for the case with qs ¼ 0:1; qi ¼ 0:2 (black dashed line) is shown here for com-

parison. All these cases are characterized by the same value of

qs ¼ ðq2
s þ q2

i Þ
1=2

.

FIG. 8. From the simulations shown in Fig. 7, isolines of the in-plane mag-

netic flux function w and the electrostatic potential / at t¼ 600 for (top)

qs ¼ 10�5; qi ¼ 0:2236 and (bottom) qs ¼ 0:2236; qi ¼ 10�5. For clarity,

only a small portion of the computational domain is plotted with an altered

aspect ratio. The magnetic island separatrix at the corresponding time have

been superimposed (dashed lines). The full width of the magnetic island is

w 
 2de ¼ 0:1 in both cases, but for hot ions the separatrix is characterized

by a greater opening close to the X-point.
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magnitude of the E�B flow velocities along the inflow and

outflow directions across the X-point. For the hot ion case, it

is found that maxjvExðx; 0; 600Þj is about one order of magni-

tude higher than in the cold ion case, and an even larger dif-

ference is found for maxjvEyð0; y; 600Þj. The change in the

behaviour of the E�B flow velocities leads to the different

instantaneous growth rate for hot and cold ions at this stage

of the reconnection process. Therefore, the first acceleration

phase that appears when ions are hot can be explained by

looking at the spatial structures in the field / in Fig. 8.

To understand the behaviour of the electrostatic poten-

tial, it is useful to carry out some analytical considerations.

We note that since the first acceleration phase occurs when

the island width exceeds the thickness of the electron layer

but not that of the ions, i.e., de < w=2 < qs, we can consider

only the region jxj < qs around the X-point, where the

motion of the ions is essentially the gyro-motion. Hence, the

out-of-plane dynamics is determined only by the electrons,

whose equations of continuity and motion in the z-direction

are, respectively, Eqs. (33) and (34), closed by the quasi-

neutrality condition

ne ¼
ðC0 � 1Þ

q2
i

/: (35)

In the limit k2
?q

2
i � 1, Eq. (35) expresses the fact that the

density is equal to the E�B vorticity ne ¼ r2
?/, in which

case Eqs. (33) and (34) reduce simply to

@r2
?/
@t
þ ½/;r2

?/� ¼ ½w;r2
?w�; (36)

@

@t
ðw� d2

er2
?wÞ þ ½/;w� d2

er2
?w� ¼ �q2

s ½w;r2
?/�; (37)

that can be cast in the following Lagrangian conservative

form53,56

@Gc
6

@t
þ ½/c

6;G
c
6� ¼ 0; (38)

where

Gc
6 ¼ w� d2

er2
?w6deqsr2

?/; /c
6 ¼ /6

qs

de
w: (39)

On the other hand, in the limit k2
?q

2
i 	 1, at the leading

order Eq. (35) reduces to the relation ne ¼ �/=q2
i , and the

system (33)–(34) becomes

@/
@t
¼ q2

i ½r2
?w;w�; (40)

@

@t
ðw� d2

er2
?wÞ þ ½/;w� d2

er2
?w� ¼

q2
s

q2
i

½w;/�; (41)

which can as well be cast in Lagrangian conservative form

@Gl
6

@t
þ ½/l

6;G
l
6� ¼ 0; (42)

where

Gl
6 ¼ w� d2

er2
?w7

deqs

q2
i

/; /l
6 ¼ /c

6: (43)

Therefore, the structure of the electrostatic potential around

the X-point can be linked to Gc
6 in the cold ion limit, and to

Gl
6 in the large ion Larmor radius limit. Indeed, subtracting

the invariants Gc
6, we obtain

/ ¼ r�2
?

Gc
þ � Gc

�
2deqs

� �
; (44)

whereas, from the difference between the invariants Gl
6 we

obtain

/ ¼ q2
i

Gl
� � Gl

þ
2deqs

: (45)

Hence, from relation (44) we can infer that in the cold ion

limit / is smoothed with respect to DGc
6 ¼ Gc

þ � Gc
�, while

relation (45) shows that in the large ion Larmor radius limit

/ is proportional to DGl
7 ¼ Gl

� � Gl
þ. Since the topological

constraints set by Eqs. (38) and (42) force the G-family

Lagrangian invariants to develop small scale structures in

both the hot ðqs 6¼ 0Þ and cold ðqs ! 0Þ electron regimes, as

FIG. 9. From the same simulations as in Fig. 7, profiles of the (a) x-compo-

nent of the E�B flow velocity at y¼ 0, t¼ 600 and the (b) y-component of

the E�B flow velocity at x¼ 0, t¼ 600. The red line refers to qs ¼ 10�5;
qi ¼ 0:2236, whereas the blue line refers to qs ¼ 0:2236; qi ¼ 10�5. Note

that in the hot ion case, maxjvExðx; 0; 600Þj is about one order of magnitude

higher than in the cold ion case. An even larger difference between the hot

and cold ion cases is found for maxjvEyð0; y; 600Þj.
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shown in Ref. 56 and in several subsequent works, it is now

evident that when ions are hot the field / retains the small

scale structures of Gl
� � Gl

þ. This is clearly shown in Figs.

10(a) and 10(b), where both DGl
7 and DGc

6 exhibit small

scale structures, which are reflected in the field / only in the

hot ion case, as can be seen by comparing Figs. 10(a) and

10(b) with Figs. 8(b) and 8(d). As a further confirmation

of the previous analytical considerations, in Fig. 10(c),

are shown the profiles of / (red solid line) and q2
i �

DGl
7=ð2deqsÞ (black dotted line) at y¼ 0.2, t¼ 600, for the

hot ion case. The two lines are essentially indistinguishable

from one another, thus, confirming the validity of relation

(45) in the limit k2
?q

2
i 	 1. In Fig. 10(d), a similar compari-

son for the cold ion case shows that / (we have plotted

/ � 10 for clarity) is smoothed with respect to DGc
6=ð2deqsÞ,

as predicted by relation (44).

After the first acceleration phase induced by the ion

Larmor gyration, the instantaneous growth rate decreases

only to undergo a strong enhancement when a Petschek-like

configuration arises due to finite qs values. This is shown in

Fig. 11, where the out-of-plane current density and the mag-

netic field lines are plotted at three different times of the sim-

ulation shown in Fig. 6(a). The early nonlinear phase is

characterized by a thin current sheet, while the second accel-

eration phase occurs when the out-of-plane current density

from the X-point opens, giving rise to a macroscopic outflow

region that speeds up the reconnection process. A micro-

scopic current sheet persists at the X-point with a width that

shrinks in time as the reconnection proceeds. Indeed, the

adopted gyrofluid model does not contain cutoff dissipative

scale lengths. It is clear that in a real plasma this tendency

toward a singular behavior would be limited by additional

physics not taken into account in the model, such as, for

instance, electron Larmor radius effects or instabilities.66

However, performing a simulation with double the resolution

in the x-direction showed that the reconnection rate is not

affected by the size of the numerical dissipation at scales

well below the electron skin depth, whereas the quantity that

is most sensitive to numerical dissipation, the peak electron

velocity at the X-point, increases by less than 6% when the

FIG. 10. From the same simulations as in Fig. 7, isolines of (a) DGl
7

¼ Gl
� �Gl

þ at t¼ 600 for qs ¼ 10�5; qi ¼ 0:2236, and (b) DGc
6 ¼ Gc

þ
�Gc

� at t¼ 600 for qs ¼ 0:2236; qi ¼ 10�5. For clarity, only a small por-

tion of the computational domain is plotted with an altered aspect ratio. The

magnetic island separatrix at the corresponding time have been superim-

posed (dashed lines). Profiles of (c) / (red solid line) and q2
i � DGl

7=ð2deqsÞ
(black dotted line) at y¼ 0.2, t¼ 600 for the hot ion case, and (d) 10 � /
(blue solid line) and DGc

6=ð2deqsÞ (black dotted line) at y¼ 0.2, t¼ 600 for

the cold ion case. For clarity, only the interval �0:4 � x � 0:4 is plotted.

Panel (c) confirms numerically the validity of relation (45) in the large ion

Larmor radius limit.

FIG. 11. From the simulation shown in Fig. 6(a), blowup around the X-point

of the out-of-plane current density with magnetic field lines (white lines)

superimposed at (left frame) t¼ 600, during the first acceleration phase, at

(central frame) t¼ 760, at the beginning of the second acceleration phase,

and at (right frame) t¼ 900, well into the second acceleration phase. The

full width of the magnetic island is w¼ 0.097 at t¼ 600, w¼ 0.266 at

t¼ 760, and w¼ 0.920 at t¼ 900.
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resolution is doubled. Previous works54,57 explained this

finding as a consequence of the fact that the nonlinear micro-

scales narrower than the electron skin depth carry a negligi-

ble current with respect to that distributed over a width of

order de. Similar conclusions were also obtained in the con-

text of electron MHD (see, e.g., Ref. 67), where it was found

that the reconnection rate becomes independent of the dissi-

pation coefficient in the limit of a very small magnetic

dissipation.

We observe that an X-type magnetic field configuration

(not shown here) develops also during the nonlinear acceler-

ation of the cold ion case shown in Fig. 7(b). This is due to

electron temperature effects, as pointed out in the previous

works.32,55–57,68–70

Note that for the cases investigated here, characterized

by b ¼ 2c2
s=v

2
A < 2ðme=miÞ1=4

and constant equilibrium den-

sity, the qualitative evolution of magnetic reconnection does

not depend on ion acoustic wave dynamics. In fact, Fig. 12

shows that also in the limit di !1 the reconnection process

undergoes two phases of strong increase of the instantaneous

growth rate. Moreover, ion acoustic wave dynamics is found

to be stabilizing also in the nonlinear phase since the effec-

tive growth rate of the reconnecting instability is higher in

the regime without ion compressibility effects than in the

case with out-of-plane ion compressibility.

By comparing Figs. 6(a) and 6(b), we have previously

observed that the enhancement of the maximum effective

growth rate over its linear value increases with decreasing

ratios of the electron skin depth to the equilibrium magnetic

field scale length. A quantitative evaluation is shown in

Fig. 13. Panel (a) shows the scaling of the linear and maxi-

mum effective growth rates with de, while in panel (b) it is

shown their ratio as a function of de. We observe that all

runs are characterized by the same equilibrium configuration

and the same values of mi=me; be; bi; Te; Ti. The growth

rate of the linear phase, which corresponds approximately to

the linear growth of the m¼ 1 mode, scale linearly with the

de values examined here, which are such that deD0�1. This

is in agreement with the linear theory. Indeed, from Eq. (26),

we know that cL / de
1=3qs

2=3, but since in the scaling

of Fig. 13 we have qs ¼ c1de and qi ¼ c2de, with c1 and c2

as constants, the proportionality relation translates to

cL / ðc2
1 þ c2

2Þ
1=3de / de. The peak effective growth rate

cmax decreases linearly with de for 0:1 � de � L, whereas it

asymptotes to a constant value for lower de. Therefore, cmax

becomes weakly dependent on de (i.e., the mechanism that

breaks the frozen-in condition) when the thickness of both

the electron and ion diffusion regions (which scale like de

and qs, respectively) are effectively much smaller than the

equilibrium magnetic field scale length ðde; qs � LÞ. Note

that in the limit of no-guide field, di replaces qs as the typical

length scale of the ion diffusion region thickness.71,72

As a consequence of the behaviour of linear and peak

effective growth rates, cmax=cL � 2 for 0:1 � de � L,

whereas for lower de values, the peak effective growth rate

exhibits a dramatic enhancement over its linear value, as

shown in Fig. 13(b). However, it is important to point out

that when the limit deD0 � ðde=qsÞ1=3
is reached the faster-

than-exponential phase vanishes because in this case the

nonlinear regime is characterized by very thin islands

ðwD0 � 1Þ for which the constant w approximation applies

across the island. Therefore, a Rutherford-like phase follows

the linear phase and the magnetic island saturates at a micro-

scopic width.73,74

In order to make contact with observations and previous

theoretical works, we evaluate the peak reconnection rate by

FIG. 12. Effective growth rate of the reconnecting instability,

c ¼ dðln dwXÞ=dt, as a function of time, for di¼ 106 (this choice identifies

the case di !1), which has the effect of eliminating ion acoustic waves

(green solid line). The equilibrium configuration as well as the other plasma

parameters are the same as in Fig. 6(a), whose effective growth rate is shown

here for comparison (black dashed line).

FIG. 13. (a) Scaling of the linear and peak effective growth rates with elec-

tron skin depth. The square data points are linear growth rates (long-dashed

line), while circle data points are peak growth rates (dashed-dotted line). All

runs are characterized by the same equilibrium configuration and the same

values of mi=me; be; bi, Te, Ti. (b) Ratio between the peak effective growth

rate and the linear one as a function of de (short-dashed line).
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calculating the maximum out-of-plane electric field at the

X-point. Indeed, in two-dimensional reconnection, the break-

ing and rejoining of magnetic field lines can take place only

at an X-point, and the reconnection rate Ez,X is a measure of

the temporal rate of change of magnetic flux that undergoes

this process. Since the z-component of the electrostatic

field vanishes at the resonant surface, from Faraday’s law

Ez;X ¼ �dwX=dt, with wX ¼ wð0; 0; tÞ. We recall that from

relations (2) the electric field is normalized to vAB0, but to

facilitate comparison with the previous works we renormal-

ize the reconnection rate using vA,up By0,up, where we choose

By0;up ¼ maxjBy;eqj, that corresponds to the in-plane equilib-

rium magnetic field at x 
 60:66 from the rational surface,

and vA;up ¼ By0;up=ðl0n0miÞ1=2
. This choice is admittedly ad

hoc, but nevertheless it is reasonable for the purpose of an

estimate. The resulting peak reconnection rates from the

simulations shown in Fig. 13 are listed in Table I. For

sufficiently large systems, which in this case means L	 de;
qs; qi and deD0�1, Table I shows that (in dimensional units)

Emax
z;X � 0:1vA;upBy0;up, in qualitative agreement with the

results of the numerical simulations in Refs. 47, 70, 75, and

76 for fast magnetic reconnection with a large guide field.

This peak reconnection rate is also consistent with observed

fast energy release rates.8,14,15 We stress again that when the

diffusion region thickness is so thin that deD0 � ðde=qsÞ1=3
,

the reconnection becomes a slow diffusive process, conse-

quently the reconnection rate drops until Emax
z;X ! 0 as

de ! 0.

VI. SUMMARY

We have explored the linear and nonlinear evolution of

magnetic reconnection phenomena in which the reconnect-

ing component of the magnetic field is small compared to

the total magnetic field strength. Adopting a gyrofluid model

for collisionless plasmas, we have studied the effects of ion

gyration, ion and electron compressibility, and electron iner-

tia on the growth rate of the reconnecting instability. In the

linear theory limit, we have compared the growth rates

obtained from gyrofluid simulations with analytical calcula-

tions across the entire spectrum of linearly unstable wave

numbers. Focusing on high-temperature plasmas character-

ized by b	 2me=mi, we have found a good agreement

between the theory and the simulations, even if for de values

not asymptotically small the gyrofluid growth rates have a

weaker dependence on Ti/Te and bi than the analytic theory.

Furthermore, we have shown that the inclusion of the ion

acoustic wave dynamics have stabilizing effects in both cold

and hot ion regimes.

In the investigation of the nonlinear evolution of the

reconnecting instability, we have focused on the strongly

unstable regime (large D0), which is relevant to the general

problem of fast magnetic reconnection. We have shown for

the first time that the nonlinear evolution of the reconnection

process undergoes a novel behaviour when ions are hot

ðqi � deÞ and the diffusion region thickness is effectively

much smaller than the equilibrium magnetic field scale

length ðde; qs � LÞ, as is expected to be the case in most of

space and laboratory plasmas.64,65 Under these circumstan-

ces, magnetic reconnection undergoes two distinct accelera-

tion phases characterized by a strong increase of the

instantaneous growth rate. The first nonlinear acceleration is

due to ion temperature effects. In fact, we have shown that

the ion Larmor gyration is responsible for the development

of strong gradients of the electrostatic potential close to the

X-point, which in turn lead to large E�B flows that speed

up the reconnection. After a stall phase in which the instanta-

neous growth rate decreases, a second acceleration phase

begins due to both ion and electron temperature effects that

allow the emergence of a Petschek-like configuration. In the

low-b regimes considered here, i.e., when kkvA > kkcs, the

out-of-plane ion compressibility does not change this quali-

tative picture.

Finally, the peak effective growth rate of the reconnec-

tion process is found to increase dramatically over its linear

value for sufficiently large systems. This is because the

effective growth rate of the linear phase depends strongly on

the microscopic plasma parameters, while the peak effective

growth rate becomes weakly dependent on the electron

inertia and the other microscopic parameters when L	 de;
qs; qi and deD0�1. When these limits are fulfilled, the peak

reconnection rate scales roughly as Emax
z;X � 0:1vA;upBy0;up,

that is fast enough to explain observed fast energy release

rates.8,14,15
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APPENDIX: DISPERSION RELATION

Let us consider a homogeneous equilibrium described

by ni;eq ¼ ne;eq ¼ const; ui;eq ¼ 0; /eq ¼ 0, and B?;eq

¼ rweq � ẑ ¼ By0ŷ, with By0 as a constant. If we assume

that all the fields can be written as v ¼ veq þ dvðx; y; tÞ,

TABLE I. Maximum reconnection rate for different plasma parameters. The

system size in the y-direction is Ly ¼ 4p.

deðLÞ diðLÞ qsðLÞ qiðLÞ Emax
z;X ðvA;upBy0;upÞ

0.2 2 0.4 0.8 0.2827

0.15 1.5 0.3 0.6 0.2076

0.1 1 0.2 0.4 0.1418

0.075 0.75 0.15 0.3 0.1249

0.05 0.5 0.1 0.2 0.1176

0.0375 0.375 0.075 0.15 0.1122

0.025 0.25 0.05 0.1 0.1004
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where dv represents small perturbations that behave like

expðikxxþ ikyy� ixtÞ, the linearized versions of Eqs. (5)–(8)

for the Fourier components are

ixn̂i � ikyûiBy0 ¼ 0; (A1)

ixC1=2
0 ðbÞŵ þ ixd2

i ûi � ikyC
1=2
0 ðbÞ/̂By0 � ikyq

2
i n̂iBy0 ¼ 0;

(A2)

ixn̂e � ikyûeBy0 ¼ 0; (A3)

ixŵ � ixd2
e ûe � iky/̂By0 þ ikyq

2
s n̂eBy0 ¼ 0; (A4)

with the closure relations

k2
?ŵ ¼ �ûe þ C1=2

0 ðbÞûi; (A5)

n̂e ¼ C1=2
0 ðbÞn̂i þ

ðC0ðbÞ � 1Þ
q2

i

/̂: (A6)

In Fourier space C0ðbÞ ¼ e�bI0ðbÞ, where b ¼ k2
?q

2
i and I0 is

the modified Bessel function of the first kind. Hence, this

system yields the following dispersion relation:

½d2
i ð1þ d2

e k2
?Þ þ d2

eC0ðbÞ�
x4

k4
y

 !

¼ B2
y0

�
ðd2

i k2
? þ C0ðbÞÞq2

s � ð1þ d2
e k2
? þ d2

i k2
? � C0ðbÞÞ

� q2
i

C0ðbÞ � 1

�
x2

k2
y

 !
þðq2

s þ q2
i ÞB4

y0k2
?

q2
i

C0ðbÞ � 1
: (A7)

In the limit di !1, this equation reduces to

ð1þ d2
e k2
?Þx2 ¼ k2

y B2
y0k2
? q2

s �
q2

i

C0ðbÞ � 1

" #
; (A8)

which is the general dispersion relation of dispersive Alfv�en

waves in a homogeneous plasma. By assuming a regime

such that be � 2me=mi, we find the dispersion relation for

the inertial Alfv�en wave77

x2 ¼
k2

y B2
y0

1þ d2
e k2
?
; (A9)

which reduces to the shear Alfv�en wave in the limit

d2
e k2
? � 1. In contrast, by assuming a regime such that

2me=mi � be � 1, we find the general dispersion relation

for the kinetic Alfv�en wave78

x2 ¼ k2
y B2

y0k2
? q2

s �
q2

i

C0ðbÞ � 1

" #
: (A10)

In the limit k2
?q

2
i 	 1, for which C0ðbÞ 
 0, the above equa-

tion reduces to

x2 ¼ k2
y B2

y0k2
?ðq2

s þ q2
i Þ: (A11)

In the opposite limit k2
?q

2
i � 1, we can expand the integral

operator as C0ðbÞ ¼ 1� bþ ð3=4Þb2 þOðb3Þ, so that

b=ð1�C0ðbÞÞ 
 1=ð1� ð3=4ÞbÞ ¼ 1þ ð3=4ÞbþOðb2Þ, and

Eq. (A10) becomes

x2 ¼ k2
y B2

y0 1þ k2
?q

2
i

3

4
þ Te

Ti

� �� �
: (A12)

On the right-hand side of the previous equation, the first

term represents the shear Alfv�en wave, whereas the other

terms represent the finite Larmor radius corrections. Note

that k � Beq ¼ kyBy0 since in this two-dimensional analysis

kz¼ 0. Therefore, the guide field B0 enters only via the ion

and ion-sound Larmor radius.
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