98 research outputs found

    1064 nm laser-induced defects in pure SiO<sub>2</sub> fibers

    Get PDF

    2W/nm Peak-power All-Fiber Supercontinuum Source and its Application to the Characterization of Periodically Poled Nonlinear Crystals

    Full text link
    We demonstrate a uniform high spectral brightness and peak power density all-fiber supercontinuum source. The source consists of a nanosecond Ytterbium fiber laser and an optimal length PCF producing a continuum with a peak power density of 2 W/nm and less than 5 dB of spectral variation between 590 to 1500 nm. The Watt level per nm peak power density enables the use of such sources for the characterization of nonlinear materials. Application of the source is demonstrated with the characterization of several periodically poled crystals.Comment: 8 pages 4 figures v2 includes revisions to the description of the continuum formatio

    Continuation-Passing C: compiling threads to events through continuations

    Get PDF
    In this paper, we introduce Continuation Passing C (CPC), a programming language for concurrent systems in which native and cooperative threads are unified and presented to the programmer as a single abstraction. The CPC compiler uses a compilation technique, based on the CPS transform, that yields efficient code and an extremely lightweight representation for contexts. We provide a proof of the correctness of our compilation scheme. We show in particular that lambda-lifting, a common compilation technique for functional languages, is also correct in an imperative language like C, under some conditions enforced by the CPC compiler. The current CPC compiler is mature enough to write substantial programs such as Hekate, a highly concurrent BitTorrent seeder. Our benchmark results show that CPC is as efficient, while using significantly less space, as the most efficient thread libraries available.Comment: Higher-Order and Symbolic Computation (2012). arXiv admin note: substantial text overlap with arXiv:1202.324

    Prolate yrast cascade in 183Tl

    Get PDF
    The yrast sequence in 183Tl has been studied for the first time in recoil-mass selected γ-ray spectroscopic measurements. A rotational-like cascade of seven transitions is established down to the band head with probable spin and parity (13/2+). Unlike in the adjacent odd-mass Tl nuclei, prompt γ decay from the yrast band to a lower lying weakly deformed (oblate) structure is not observed. These features are consistent with the predicted drop of the prolate band head in 183Tl compared to 185Tl. The implications for the prolate energy minimum in odd-mass Tl nuclei at the neutron i 13/2 midshell (N = 103) are discussed

    High-resolution spectroscopy of decay pathways in the 12C(12C,γ) reaction

    Get PDF
    The decay branchings of a resonance in the 12C(12C,γ)24Mg reaction at Ec.m. = 8.0 MeV have been studied with high resolution using the Gammasphere array. Radiative capture residues were discriminated from scattered beam and the dominant evaporation channels using the fragment mass analyzer coupled to a multistage Parallel Grid Avalanche Counter (PGAC)/ion chamber system. The clean selection of residues has allowed the population of excited states up to 10 MeV in 24Mg to be examined in detail. Strong feeding of an excited Kπ=0- band is observed. A Jπ = 4+ assignment to the resonance is strongly favored

    Core-excited smoothly terminating band in 114Xe

    Get PDF
    High-spin states have been studied in neutron-deficient 54114Xe, populated through the 58Ni(58Ni,2p) fusion-evaporation reaction at 230 MeV. The Gammasphere γ-ray spectrometer has been used in conjunction with the Microball charged-particle detector in order to select evaporation residues of interest. The yrast band has been greatly extended to a tentative spin of 52hℏ and shows features consistent with smooth band termination. This band represents the first evidence for a core-excited (six-particle, two-hole) proton configuration above Z = 53

    Shell evolution approaching the N=20 island of inversion : Structure of 26Na

    Get PDF
    The levels in 26Na with single particle character have been observed for the first time using the d(25Na, pγ) reaction at 5 MeV/nucleon. The measured excitation energies and the deduced spectroscopic factors are in good overall agreement with (0+1)hω shell model calculations performed in a complete spsdfp basis and incorporating a reduction in the N=20 gap. Notably, the 1p3/2 neutron configuration was found to play an enhanced role in the structure of the low-lying negative parity states in 26Na, compared to the isotone 28Al. Thus, the lowering of the 1p3/2 orbital relative to the 0f7/2 occurring in the neighbouring Z=10 and 12 nuclei - 25,27Ne and 27,29Mg - is seen also to occur at Z=11 and further strengthens the constraints on the modelling of the transition into the island of inversion

    High-spin study of rotational structures in 72Br

    Get PDF
    High-spin states in 3572Br37 were studied using the 40Ca(36Ar, 3pn) reaction. The existing level scheme has been significantly modified and extended. Evidence has been found for a spin reassignment of -1ℏh to the previously observed negative-parity band, which carries implications for the interpretation of a signature inversion in this structure. One signature of the previously assigned positive-parity band is interpreted as negative parity and has been extended to I π=(22-) and its signature partner has been observed up to Iπ = (19-) for the first time. The remaining positive-parity band has been extended to Iπ=(29+). A sequence of states observed to Iπ=(22+) may be the signature partner of this structure. Configurations have been assigned to each of these three structures through comparisons to cranked Nilsson-Strutinsky calculations
    corecore