605 research outputs found

    East African origins for Madagascan chickens as indicated by mitochondrial DNA

    Get PDF
    Published 22 March 2017The colonization of Madagascar by Austronesian-speaking people during AD 50–500 represents the most westerly point of the greatest diaspora in prehistory. A range of economically important plants and animals may have accompanied the Austronesians. Domestic chickens (Gallus gallus) are found in Madagascar, but it is unclear how they arrived there. Did they accompany the initial Austronesian-speaking populations that reached Madagascar via the Indian Ocean or were they late arrivals with Arabian and African sea-farers? To address this question, we investigated the mitochondrial DNA control region diversity of modern chickens sampled from around the Indian Ocean rim (Southeast Asia, South Asia, the Arabian Peninsula, East Africa and Madagascar). In contrast to the linguistic and human genetic evidence indicating dual African and Southeast Asian ancestry of the Malagasy people, we find that chickens in Madagascar only share a common ancestor with East Africa, which together are genetically closer to South Asian chickens than to those in Southeast Asia. This suggests that the earliest expansion of Austronesian-speaking people across the Indian Ocean did not successfully introduce chickens to Madagascar. Our results further demonstrate the complexity of the translocation history of introduced domesticates in Madagascar.Michael B. Herrera, Vicki A. Thomson, Jessica J.Wadley, Philip J. Piper, Sri Sulandari, Anik Budhi Dharmayanthi, Spiridoula Kraitsek, Jaime Gongora and Jeremy J. Austi

    Thermal stress effects in intermetallic matrix composites

    Get PDF
    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects

    Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Get PDF
    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit

    Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films

    Get PDF
    Ultrafast optical excitation of a metal ferromagnetic film results in a modification of the magnetocrystalline anisotropy and induces the magnetization precession. We consider two main contributions to these processes: an effect of noncoherent phonons, which modifies the temperature dependent parameters of the magnetocrystalline anisotropy and coherent phonons in the form of a strain contributing via inverse magnetostriction. Contrary to earlier experiments with high-symmetry ferromagnetic structures, where these mechanisms could not be separated, we study the magnetization response to femtosecond optical pulses in the low-symmetry magnetostrictive galfenol film so that it is possible to separate the coherent and noncoherent phonon contributions. By choosing certain experimental geometry and external magnetic fields, we can distinguish the contribution from a specific mechanism. Theoretical analysis and numerical calculations are used to support the experimental observations and proposed model

    Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    Get PDF
    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields

    Antiferromagnetic spintronics

    Get PDF
    Antiferromagnetic materials are magnetic inside, however, the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets invisible on the outside. It also implies that if information was stored in antiferromagnetic moments it would be insensitive to disturbing external magnetic fields, and the antiferromagnetic element would not affect magnetically its neighbors no matter how densely the elements were arranged in a device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. The outstanding question is how to efficiently manipulate and detect the magnetic state of an antiferromagnet. In this article we give an overview of recent works addressing this question. We also review studies looking at merits of antiferromagnetic spintronics from a more general perspective of spin-ransport, magnetization dynamics, and materials research, and give a brief outlook of future research and applications of antiferromagnetic spintronics.Comment: 13 pages, 7 figure

    Contributions from coherent and incoherent lattice excitations to ultrafast optical control of magnetic anisotropy of metallic films

    Get PDF
    Spin-lattice coupling is one of the most prominent interactions mediating response of spin ensemble to ultrafast optical excitation. Here we exploit optically generated coherent and incoherent phonons to drive coherent spin dynamics, i.e. precession, in thin films of magnetostrictive metal Galfenol. We demonstrate unambiguously that coherent phonons, also seen as dynamical strain generated due to picosecond lattice temperature raise, give raise to magnetic anisotropy changes of the optically excited magnetic film; and this contribution may be comparable to or even dominate over the contribution from the temperature increase itself, considered as incoherent phonons

    Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Get PDF
    Acknowledgements H.N.G.W. is grateful for support for this work by the ONR (grant number N00014-15-1-2933), managed by D. Shifler, and the DARPA MCMA programme (grant number W91CRB-10-1-005), managed by J. Goldwasser.Peer reviewedPostprintPostprintPostprintPostprin

    Tuning perpendicular magnetic anisotropy in (Ga,Mn)(As,P) by thermal annealing

    Full text link
    We have investigated the effects of post growth low temperature annealing on the magnetic, electrical and structural properties of (Ga_0.94,Mn_0.06)(As_0.9,P_0.1) layers grown by molecular beam epitaxy. By controlling the annealing time we are able to tune the magnetic anisotropy between an easy axis in the plane for the as-grown samples, to an easy axis perpendicular to the plane for fully annealed samples. The increase of the carrier density, as a result of annealing, is found to be the primary reason for the change in magnetic anisotropy, in qualitative agreement with theoretical predictions.Comment: 13 pages, 3 figures, submitted to Applied Physics Letter
    corecore