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ABSTRACT

Spin-lattice coupling is one of the most prominent interactions mediating response of spin ensemble to ultrafast
optical excitation. Here we exploit optically generated coherent and incoherent phonons to drive coherent spin
dynamics, i.e. precession, in thin films of magnetostrictive metal Galfenol. We demonstrate unambiguously that
coherent phonons, also seen as dynamical strain generated due to picosecond lattice temperature raise, give raise
to magnetic anisotropy changes of the optically excited magnetic film; and this contribution may be comparable
to or even dominate over the contribution from the temperature increase itself, considered as incoherent phonons.
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1. INTRODUCTION

Changing magnetic anisotropy by femtosecond laser pulses is among the most efficient and universal approaches
allowing controlling magnetic state of matter on a (sub)picosecond time scale.1 In the most of the cases the laser-
induced change of the magnetic anisotropy manifests itself in magnetization precession triggered by a sudden
change of the effective magnetic field, which strength and direction are dependent on the anisotropy itself and
the external magnetic field. As a result, controlling magnetic anisotropy by light enables generation of uniform
magnetization precession,2 propagating spin waves,3 and coherent magnetization switching.4

Since magnetocrystalline anisotropy originates from the spin-lattice coupling, optically-induced generation
of collective excitations in a lattice, or phonons, paves a way towards control of magnetic anisotropy. In a
thin metallic films both coherent and incoherent phonons can be effectively generated as a result of an impact
of a femtosecond laser pulses. Indeed, impact of a femtosecond laser pulse on a thin metallic films results in
a rapid increase of the electron temperature. This is followed by an increase of the lattice temperature, i.e.
generation of non-coherent phonons, as well as by emergence of the thermal stress in the near surface region.5

The latter induces the strain, seen also as coherent phonons, in two forms, persistent anisotropic quasiuniform
strain and the picosecond strain pulses propagating away from the surface with sound velocities. The effect
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of non-coherent phonons, or lattice heating, on the magnetic anisotropy of metallic films has been extensively
studied by a number of authors.6–10 Analogously, propagating picosecond stain pulses were demonstrated to
alter the magnetic anisotropy in thin magnetic films11–13 via inverse magnetosctriction. However, the effect of
the persistent quasiuniform strain, which is intrinsically present in laser-excited metallic films, on their magnetic
anisotropy remains largely unexplored, to the best of our knowledge.

Here we report on experimental and theoretical study of the magnetic anisotropy change in the magnetostric-
tive metallic Galfenol (Fe0.81Ga0.19) film subjected to the action of femtosecond laser pulses. The choice of
the film grown on a low-symmetry substrate GaAs (311) enabled us to distinguish unambiguously between the
change of the magnetic anisotropy driven by laser pulse-induced persistent strain and that occurring due to lat-
tice heating. While both processes result in excitation of magnetization precession, we show that the trajectory
of the precession differs depending on the underlying mechanism of the anisotropy change. Furthermore, we
demonstrate that the strain-driven change of magnetic anisotropy dominates the response of the metallic film
when the external magnetic field strength is large and the heating-driven mechanism becomes ineffective.

2. EXPERIMENTAL

Polycrystalline 100 nm thick film of a Galfenol alloy Fe0.81Ga0.19 was grown on the (311)-oriented GaAs substrate
(Fig. 1(a)) by the magnetron sputtering technique. The misorientation of crystallographic axes of crystallites,
average size of which was of a few nanometers, was not exceeding a few degrees. Therefore, below we consider
the studied film as the single crystalline one. The SQUID measurements confirmed that the easy magnetization
axis of the film is oriented in the film plane along the [01̄1] crystallographic axis (y-axis). In our experiments
external DC magnetic field B was applied in the sample plane along the magnetization hard axis, which lies
along [2̄33] crystallographic direction (x-axis). In this geometry magnetization M orients along the applied field
if the latter strength exceeds B=150mT. At lower field strength magnetization is along an intermediate direction
between the x- and y-axes.

Figure 1. (a) Schematic presentation of the Galfenol film grown on the (311) GaAs substrate. x′-, y′- and z′-axes are 
directed along the crystallographic [100], [010] and [001] axes, respectively. (b) Laser-induced changes of the normalized 
out-of-plane component of magnetization Mz/Ms as a function of the pump-probe time delay t measured at various 
strengthes of the applied magnetic field B. (c) The same dependences measured with higher resolution (symbols) and 
their fit (solid lines) using Eq. 1. (d) Field dependence of the initial phase of the oscillation ϕ0 of the out-of-plane 
component of magnetization as obtained from the fit using Eq. 1(symbols) and from calculation (solid line).
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Studies of the laser-induced magnetization dynamics in the Fe0.81Ga0.19 film were performed using the con-
ventional femtosecond pump-probe technique described in details elsewhere.14 Linearly polarized pump pulses
with a duration of 200 fs, central wavelength of 1030 nm, and fluence of 2-20mJ/cm2 were used to excite the
Galfenol film. Linearly polarized probe pulses split from the same beam and having the flunece of 10µJ/cm2

were used to monitor the temporal evolution of the out-of-plane component Mz of the film magnetization via
changes in magneto-optical Kerr rotation (MOKE). All measurements were performed at room temperature.

3. RESULTS AND DISCUSSION

Fig. 1(b) shows the temporal evolution of the MOKE signal following excitation of the sample by femtosecond
laser pulses. There are clear oscillatory component in the observed signal, which can be approximated by the
function

θ(t) = Ae−t/τ sin(2πΩt+ ϕ0). (1)

As can be seen the frequency Ω and the amplitude A of the oscillations are dependent on the applied field
strength thus confirming that the latter originates from the laser-induced magnetization precession. The most
striking result is that the initial phase ϕ0 of the oscillations possesses nontrivial field dependence (Fig. 1(c)). This
dependence shown in detail in Fig. 1(d) captures how the trace of the magnetization precession changes when
the field is increased. Keeping in mind that at t = 0 both the magnetization easy axis and the applied field B
are oriented in the film plane, one can conclude that pure sine-like (ϕ0 = 0) temporal evolution of the MOKE
signal at the applied field of B=150,T corresponds to the magnetization precessing around the transient effective
field Beff , which lies in the sample plane. By contrast, pure cosine-like (ϕ0 = π/2) behavior of the laser-induced
MOKE corresponds to the precession of the magnetization around Beff , having finite out-of-plane component.

The laser-induced magnetization precession in the Galfenol film grown on a (311)-GaAs substrate can be
described by Landau-Lifshitz equation15

dm

dt
= −γm×Beff(m, t), (2)

where m = M/Ms is the normalized magnetization, γ is the gyromagnetic ratio, and Beff(m, t) = −∇MFM (m, t)
is the time-dependent effective magnetic field. The magnetic part of the free energy of the Galfenol film grown
on the (311)-GaAs substrate can be expressed as

FM (m, t) = −m ·B+Bdm
2
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Here for a sake of convenience Zeeman, shape and uniaxial anisotropy terms are written in the coordinate frame 
associated with the film, i.e the z-axis is directed along the sample normal. Cubic anisotropy term and the 
magneto-elastic terms are written in the frame given by the crystallographic axes (Fig. 1(a)). The equilibrium 
values of the saturation magnetization Ms=1.59 T, the magnetic anisotropy constants K1=30 mT, Ku=45 mT, 
the magneto-elastic coefficients b1=-6 T, b2=2 T were found using literature data16–18 as well as from the fit of the 
field dependence of the precession frequency.14 Strain components εij are considered to be zero at equilibrium.

In general, under the action of the laser pulse the rapid increase of the electron temperature leads to ultrafast 
demagnetization,19 along with a rapid increase of the lattice temperature and thermal stress generation. Since in 
our experiment both easy magnetization axis and external magnetic field lie in the film plane the change of the 
demagnetizing field due to ultrafast demagnetization is not expected to trigger the precession.2 Therefore, we 
ascribe the observed precession excitation to the rapid change of magnetic anisotropy. The non-monotonous de-
pendence of the phase ϕ0 of the Mz oscillations suggests that there is a competition between different mechanism 
responsible for the change of magnetic anisotropy.

We modelled the impact of the a 200 fs laser pulse of a fluence of 10 mJ/cm2 on the (311) Galfenol film 
as an instantaneous step-like increase of the lattice temperature by 120 K, which is justified by the fact that 
the characteristic time of such change is of a few picosecond, while relaxation to the equilibrium value requires 
microseconds (see Ref. 14 for details). The corresponding thermal stress leads to the persistent compressive
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εzz = 1.2 · 10−3 and shear εxz = −4 · 10−4 strain.20 With these values we were able to model using Eqs. 2-3
the precession of magnetization excited due to strain-induced magnetic anisotropy change. Additionally, fitting
the experimental data to these equations yielded the changes of the cubic and uniaxial anisotropy constants
∆K1=-4.75mT and ∆Ku=-2.2mT. This lead a good agreement with the experimental data, as illustrated in
Fig. 1(d) for the case of the initial phase of the oscillations ϕ0.

Therefore, employing analytical calculations and minimal fitting procedure we were able to describe the
response of the (311) Galfenol film to the action of the laser pulse and distinguish two mechanisms responsible
for the magnetization precession excitation. In particular, from the analysis it follows that both laser-induced
changes of magnetocrystalline anisotropy constants ∆K1, ∆Ku and persistent strain εzz, εxz lead to the in-
plane and out-of-plane tilt of the effective magnetic field Beff(m, t). However, the ratio between these tilts
depends strongly on the strength of the applied magnetic field. At B=150mT the in-plane tilt related to ∆K1,
∆Ku dominates. In experiment it is seen as the pure sine-like oscillations of the out-of-plane component of
magnetization (Fig. 1(c)). By contrast, at the applied field of B=500mT the out-of-plane tilt of Beff due to the
laser-induced strain governs the magnetization response. This is seen as the pure cosine-like oscillations of the
out-of-plane component of magnetization (Fig. 1(c)).

Importantly, our analysis shows that the laser-induced change of ∆K1, ∆Ku effectively trigger the precession
in the range of relatively low strength of magnetic fields applied along the hard magnetization axis, while at
high fields the effect of the laser-induced strain dominates. Indeed, magnetic anisotropy favors orientation of the
magnetization along the easy direction, while applied magnetic field pulls it towards the hard one. The laser-
induced lattice heating changes K1 and Ku, thus mostly reducing the anisotropy strength without changing the
easy axis orientation. When the applied magnetic field is low, there is a delicate balance between the anisotropy
and applied field, which is easily altered by reduction of K1 and Ku due to lattice heating. By contrast, at high
magnetic field the orientation of the magnetization is dictated mostly by applied field and, thus, is less sensitive
to laser-induced changes of K1 and Ku. The effect of the laser-induced strain on the magnetic anisotropy in
the low-symmetry film is somewhat different. The compressive εzz and shear εxz strains alter the direction of
the easy magnetization axis and, therefore, affect the magnetization direction even at relatively high applied
magnetic fields. This conclusion is confirmed further by studying experimentally and analytically laser-induced
magnetization precession in a Galfenol film grown on a high-symmetry GaAs substrate, where the laser-generated
strain does not alter the magnetization axis orientation.14 As a result, the laser-induced changes of ∆K1, ∆Ku

define the response of such sample.

4. CONCLUSIONS

In conclusion, we have demonstrated experimentally laser-induced excitation of the magnetization precession in
magnetostrictive Galfenol film grown on the (311)-oriented GaAs substrate. By analysing the effect of laser-
induced increase of the lattice temperature and laser-induced strain on the magnetic anisotropy we show that
both mechanisms can effectively trigger the magnetization precession. The increase of the lattice temperature,
i.e. incoherent phonons generation, alters the magnetocrystalline anisotropy constants. The laser-induced com-
pressive and shear persistent strains, also seen as coherent phonons, change the magnetic anisotropy via inverse
magnetostriction. We determine conditions at which either of mechanisms dominates, and show that it is the low
symmetry of the studied film which enabled control of magnetic anisotropy via laser-induced persistent strain.
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