44 research outputs found

    APOBECs and Herpesviruses

    Get PDF
    The apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of DNA cytosine deaminases provides a broad and overlapping defense against viral infections. Successful viral pathogens, by definition, have evolved strategies to escape restriction by the APOBEC enzymes of their hosts. HIV-1 and related retroviruses are thought to be the predominant natural substrates of APOBEC enzymes due to obligate single-stranded (ss)DNA replication intermediates, abundant evidence for cDNA strand C-to-U editing (genomic strand G-to-A hypermutation), and a potent APOBEC degradation mechanism. In contrast, much lower mutation rates are observed in double-stranded DNA herpesviruses and the evidence for APOBEC mutation has been less compelling. However, recent work has revealed that Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and herpes simplex virus-1 (HSV-1) are potential substrates for cellular APOBEC enzymes. To prevent APOBEC-mediated restriction these viruses have repurposed their ribonucleotide reductase (RNR) large subunits to directly bind, inhibit, and relocalize at least two distinct APOBEC enzymes-APOBEC3B and APOBEC3A. The importance of this interaction is evidenced by genetic inactivation of the EBV RNR (BORF2), which results in lower viral infectivity and higher levels of C/G-to-T/A hypermutation. This RNR-mediated mechanism therefore likely functions to protect lytic phase viral DNA replication intermediates from APOBEC-catalyzed DNA C-to-U deamination. The RNR-APOBEC interaction defines a new pathogen-host conflict that the virus must win in real-time for transmission and pathogenesis. However, partial losses over evolutionary time may also benefit the virus by providing mutational fuel for adaptation

    Human cytomegalovirus mediates APOBEC3B relocalization early during infection through a ribonucleotide reductase-independent mechanism

    Get PDF
    Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCEHuman cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection

    Cyclin-Dependent Kinase Activity Controls the Onset of the HCMV Lytic Cycle

    Get PDF
    The onset of human cytomegalovirus (HCMV) lytic infection is strictly synchronized with the host cell cycle. Infected G0/G1 cells support viral immediate early (IE) gene expression and proceed to the G1/S boundary where they finally arrest. In contrast, S/G2 cells can be infected but effectively block IE gene expression and this inhibition is not relieved until host cells have divided and reentered G1. During latent infection IE gene expression is also inhibited, and for reactivation to occur this block to IE gene expression must be overcome. It is only poorly understood which viral and/or cellular activities maintain the block to cell cycle or latency-associated viral IE gene repression and whether the two mechanisms may be linked. Here, we show that the block to IE gene expression during S and G2 phase can be overcome by both genotoxic stress and chemical inhibitors of cellular DNA replication, pointing to the involvement of checkpoint-dependent signaling pathways in controlling IE gene repression. Checkpoint-dependent rescue of IE expression strictly requires p53 and in the absence of checkpoint activation is mimicked by proteasomal inhibition in a p53 dependent manner. Requirement for the cyclin dependent kinase (CDK) inhibitor p21 downstream of p53 suggests a pivotal role for CDKs in controlling IE gene repression in S/G2 and treatment of S/G2 cells with the CDK inhibitor roscovitine alleviates IE repression independently of p53. Importantly, CDK inhibiton also overcomes the block to IE expression during quiescent infection of NTera2 (NT2) cells. Thus, a timely block to CDK activity not only secures phase specificity of the cell cycle dependent HCMV IE gene expression program, but in addition plays a hitherto unrecognized role in preventing the establishment of a latent-like state

    Information systems for collaborating versus transacting: Impact on manufacturing plant performance in the presence of demand volatility⋆

    Full text link
    Research at the nexus of operations management and information systems suggests that manufacturing plants may benefit from the utilization of information systems for collaborating and transacting with suppliers and customers. The objective of this study is to examine the extent to which value generated by information systems for collaborating versus transacting is contingent upon demand volatility. We analyze a unique dataset assembled from non‐public U.S. Census Bureau data of manufacturing plants. Our findings suggest that when faced with volatile demand, plants employing information systems for collaborating with suppliers and customers experience positive and significant benefits to performance, in terms of both labor productivity and inventory turnover. In contrast, results suggest that plants employing information systems for transacting in volatile environments do not experience such benefits. Further exploratory analysis suggests that in the context of demand volatility, these two distinct dimensions of IT‐based integration have differing performance implications at different stages of the production process in terms of raw‐materials inventory and finished‐goods inventory, but not in terms of work‐in‐process inventory. Taken together, our study contributes to theoretical and managerial understanding of the contingent value of information systems in volatile demand conditions in the supply chain context.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147128/1/joom313.pd

    Human Cytomegalovirus (HCMV) UL82 Gene Product (pp71) Relieves hDaxx-Mediated Repression of HCMV Replication

    No full text
    This study examines the role of the cellular protein hDaxx in controlling human cytomegalovirus (HCMV) immediate-early (IE) gene expression and viral replication. Using permissive cell lines that either overexpress hDaxx or are depleted of hDaxx expression by the use of short hairpin RNA, we demonstrate that hDaxx functions as a repressor of HCMV IE gene expression and replication. In addition, we demonstrate that the impaired growth phenotype associated with the UL82 (pp71) deletion mutant is abolished when hDaxx knockdown cells are infected, suggesting that pp71 functions to relieve hDaxx-mediated repression during HCMV infection

    Interaction between the Human Cytomegalovirus UL82 Gene Product (pp71) and hDaxx Regulates Immediate-Early Gene Expression and Viral Replication

    No full text
    The human cytomegalovirus UL82-encoded pp71 protein is required for efficient virus replication and immediate-early gene expression when cells are infected at a low multiplicity. Functions attributed to pp71 include the ability to enhance the infectivity of viral DNA, bind to and target hypophosphorylated Rb family member proteins for degradation, drive quiescent cells into the cell cycle, and bind to the cellular protein hDaxx. Using UL82 mutant viruses, we demonstrate that the LXCXD motif within pp71 is not necessary for efficient virus replication in fibroblasts, suggesting that pp71's ability to degrade hypophosphorylated Rb family members and induce quiescent cells into the cell cycle is not responsible for the growth defect associated with a UL82 deletion mutant. However, UL82 mutants that cannot bind to hDaxx are unable to induce immediate-early gene expression and are severely attenuated for viral replication. These results indicate that the interaction between the human cytomegalovirus UL82 gene product (pp71) and hDaxx regulates immediate-early gene expression and viral replication

    Human Cytomegalovirus Immediate-Early 2 Gene Expression Blocks Virus-Induced Beta Interferon Production

    No full text
    The effect of human cytomegalovirus (HCMV) gene expression on beta interferon (IFN-β) expression was examined. We demonstrate that the HCMV immediate-early 2 (IE2) gene product IE86 can effectively block the induction of IFN-β during HCMV infection. IE86 also efficiently blocked the induction of IFN-β following Sendai virus infection, demonstrating that IE86's ability to block induction of IFN-β is not limited to HCMV infection, identifying IE2 as an IFN-β antagonist

    Human Cytomegalovirus Immediate-Early 2 Protein IE86 Blocks Virus-Induced Chemokine Expression

    No full text
    The effect of human cytomegalovirus (HCMV) gene expression on cytokine (beta interferon) and chemokine (RANTES, MIG, MCP-2, MIP-1α, and interleukin-8) expression was examined. We demonstrate that HCMV gene expression is required to suppress the transcriptional induction of these cytokines and that the HCMV immediate-early 2 gene product IE86 can effectively block the expression of cytokines and proinflammatory chemokines during HCMV and Sendai virus infection. Additionally, we present data on viral mutants and ectopic protein expression which demonstrate that pp65, another identified HCMV cytokine antagonist, is not involved in regulating these proinflammatory cytokines. This is the first report to demonstrate that IE86 can act to suppress virus-induced proinflammatory cytokine transcript expression, extending the antiviral properties of this multifunctional viral protein
    corecore