118 research outputs found

    Modeling auxin feedback signaling for polarized auxin transport in plant development

    Get PDF
    Plants are fascinating biological systems with a great potential for adaption of their developmental programs to environmental cues. In contrast to animals, plants cannot run away and thus they had to develop specialized mechanisms to react to rapid changes in the environment. These plant-specific mechanisms including light perception, tropism and developmental reprogramming (de novo organ formation, tissue re-shaping), represent highly dynamic regulatory processes that are linked and intertwined on the molecular, cellular and tissue levels. The ultimate communication between these different levels is the key to understand how plants realize their developmental decisions. Cell signaling, tissue polarization, directional transport of signaling molecules within tissues are among those biological processes that allow for such multilevel organization in plant development. Nevertheless our understanding of these processes remains largely elusive. This doctoral thesis demonstrates the results of multidisciplinary studies at the interface between several scientific disciplines, including mathematics, computer science (under supervision of Prof. Willy Govaerts) and cell and developmental biology (under guidance of Prof. Jiří Friml). Therefore, I will utilize state-of-the-art mathematical and computational techniques combined with the most recent biological data to address cell and tissue polarities as well as graded distribution patterns of the plant phytohormone auxin, in the context of plant developmental flexibility. The main goal of the research presented herein was to explore general principles of auxin feedback regulation and its outstanding roles in auxin-driven plant development. A special focus was given to the combination of local auxin signaling cues (inside and outside of the cell), subcellular dynamics (trafficking of auxin carriers) and cell-type specific factors (spatial patterns of gene activity) to account for the developmental patterns observed in planta such as canalization of auxin transport, leaf venation patterning, tissue regeneration and establishment and maintenance of cell and tissue polarities. The core of the thesis will start with a general introduction to the models for auxin-mediated plant development and will be followed by presentation of various scientific results and their potential implications for hopefully better understanding of patterning mechanisms in plants. Finally, the summarizing chapter of this thesis aims to translate the results of these various studies to the more general concept of the local auxin feedback regulation in plants

    Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells

    Get PDF
    The asymmetric localization of proteins in the plasma membrane domains of eukaryotic cells is a fundamental manifestation of cell polarity that is central to multicellular organization and developmental patterning. In plants, the mechanisms underlying the polar localization of cargo proteins are still largely unknown and appear to be fundamentally distinct from those operating in mammals. Here, we present a systematic, quantitative comparative analysis of the polar delivery and subcellular localization of proteins that characterize distinct polar plasma membrane domains in plant cells. The combination of microscopic analyses and computational modeling revealed a mechanistic framework common to diverse polar cargos and underlying the establishment and maintenance of apical, basal, and lateral polar domains in plant cells. This mechanism depends on the polar secretion, constitutive endocytic recycling, and restricted lateral diffusion of cargos within the plasma membrane. Moreover, our observations suggest that polar cargo distribution involves the individual protein potential to form clusters within the plasma membrane and interact with the extracellular matrix. Our observations provide insights into the shared cellular mechanisms of polar cargo delivery and polarity maintenance in plant cells

    Systems approaches to study root architecture dynamics

    Get PDF
    The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots (LRs) are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation. Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how LRs and thereby root system architecture is established and developed

    Cytokinin response factors regulate PIN-FORMED auxin transporters

    Get PDF
    Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development

    WOX5–IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis

    Get PDF
    In plants, the patterning of stem cell-enriched meristems requires a graded auxin response maximum that emerges from the concerted action of polar auxin transport, auxin biosynthesis, auxin metabolism, and cellular auxin response machinery. However, mechanisms underlying this auxin response maximum-mediated root stem cell maintenance are not fully understood. Here, we present unexpected evidence that WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription factor modulates expression of auxin biosynthetic genes in the quiescent center (QC) of the root and thus provides a robust mechanism for the maintenance of auxin response maximum in the root tip. This WOX5 action is balanced through the activity of indole-3-acetic acid 17 (IAA17) auxin response repressor. Our combined genetic, cell biology, and computational modeling studies revealed a previously uncharacterized feedback loop linking WOX5-mediated auxin production to IAA17-dependent repression of auxin responses. This WOX5–IAA17 feedback circuit further assures the maintenance of auxin response maximum in the root tip and thereby contributes to the maintenance of distal stem cell (DSC) populations. Our experimental studies and in silico computer simulations both demonstrate that the WOX5–IAA17 feedback circuit is essential for the maintenance of auxin gradient in the root tip and the auxin-mediated root DSC differentiation

    Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling

    Get PDF
    Here, we provide a novel mechanistic framework for cell polarization during auxin-driven plant development that combines intracellular auxin signaling for regulation of expression of PINFORMED (PIN) auxin efflux transporters and the theoretical assumption of extracellular auxin signaling for regulation of PIN subcellular dynamics.The competitive utilization of auxin signaling component in the apoplast might account for the elusive mechanism for cell-to-cell communication for tissue polarization.Computer model simulations faithfully and robustly recapitulate experimentally observed patterns of tissue polarity and asymmetric auxin distribution during formation and regeneration of vascular systems, and during the competitive regulation of shoot branching by apical dominance.Our model generated new predictions that could be experimentally validated, highlighting a mechanistically conceivable explanation for the PIN polarization and canalization of the auxin flow in plants

    Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane

    Get PDF
    A combination of super-resolution microscopy in live cells and computational modeling provides new insights into the dynamic and interwoven mechanism that maintains the polar distribution of an important plant cargo

    Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana

    Get PDF
    Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN‐FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear. Here, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze‐fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains. Pharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell‐wall components as well as connections between the cell wall and the plasma membrane. This study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems

    Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport

    Get PDF
    Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments

    Plant embryogenesis requires AUX/LAX-mediated auxin influx

    Get PDF
    The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used chemical and genetic tools on Brassica napus microspore-derived embryos and Arabidopsis thaliana zygotic embryos, and demonstrate that AUX1, LAX1 and LAX2 are required for both shoot and root pole formation, in concert with PIN efflux carriers. Furthermore, we uncovered a positive-feedback loop between MONOPTEROS (ARF5)-dependent auxin signalling and auxin transport. This MONOPTEROS-dependent transcriptional regulation of auxin influx (AUX1, LAX1 and LAX2) and auxin efflux (PIN1 and PIN4) carriers by MONOPTEROS helps to maintain proper auxin transport to the root tip. These results indicate that auxin-dependent cell specification during embryo development requires balanced auxin transport involving both influx and efflux mechanisms, and that this transport is maintained by a positive transcriptional feedback on auxin signalling
    corecore