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The plant root system is essential for providing anchorage to the soil, supplying minerals
and water, and synthesizing metabolites. It is a dynamic organ modulated by external
cues such as environmental signals, water and nutrients availability, salinity and others.
Lateral roots (LRs) are initiated from the primary root post-embryonically, after which they
progress through discrete developmental stages which can be independently controlled,
providing a high level of plasticity during root system formation. Within this review, main
contributions are presented, from the classical forward genetic screens to the more recent
high-throughput approaches, combined with computer model predictions, dissecting how
LRs and thereby root system architecture is established and developed.
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The root as an underground organ is of vital importance for
plant life. It provides anchorage to the soil, supplies minerals
and water, synthesizes metabolites, and interacts with symbiotic
organisms (Den Herder et al., 2010). The root system architecture
is shaped by the environmental signals and other external cues,
which modulate root growth direction and kinetics (Luschnig
et al., 1998; Lavenus et al., 2013), as well as its surface by affect-
ing root hair growth (Lan et al., 2013) and frequency of branching
(Sanz et al., 2011). In particular, formation of lateral roots (LRs) is
one of the key determinants of the root architecture with an emi-
nent impact on the efficiency of soil exploitation. For example,
nitrate, phosphate, or sulfate availability modulate both primary
root growth as well as LR formation and outgrowth (Linkohr
et al., 2002; Hubberten et al., 2012), demonstrating close inter-
connection between nutrient availability and root architecture.
LR organogenesis (Figure 1) is a well-defined process with dis-
crete developmental steps including (i) priming, (ii) initiation,
(iii) LR primordia (LRPs) organogenesis, (iv) LR emergence, and
(v) activation of the LR apical meristem (Laskowski et al., 1995;
Malamy and Benfey, 1997). These distinct developmental phases
are under specific control mechanisms, providing a high level
of plasticity during root system formation. To shape the root
architecture in response to various external cues, plant hormones
play an important role of rapid endogenous signal mediators
(López-Bucio et al., 2003; Malamy, 2005). The core of this hor-
monal regulatory network comprises two antagonistically acting
molecules: auxin and cytokinin. Auxin as a key stimulatory factor
triggers and coordinates LR organogenesis, while cytokinin inter-
feres with both initiation and LRP organogenesis (Benková et al.,
2003; Laplaze et al., 2007; Fukaki and Tasaka, 2009; Bielach et al.,
2012a).

The exploration of the development of the root system has
been confronted with various obstacles, such as the interplay
between primary root growth and LR organogenesis, and tech-
nical challenges, such as limitations on isolating specific tissue

layers of LRP which are hidden within tissues of the primary root.
Therefore, studying root growth has required the development
and implementation of specific tools and approaches. On other
hand, some experimental advantages are obvious, e.g., there is a
defined spatio-temporal frame or developmental window when
cells are competent to initiate LRs (Dubrovsky et al., 2006, 2011),
a capacity of ectopic induction and synchronization of LR initi-
ation along the primary root by hormone application (Himanen
et al., 2002), or easy-to-perform imaging of the LRPs.

Recently, root development research experienced great revival,
especially because of an implementation of new generation imag-
ing techniques and high-throughput approaches. The aim of this
review is to acknowledge those techniques that have contributed
to the deeper understanding of the development of the root
system, as well as to present the most novel tools and their appli-
cation potential. To present a broad picture of the formation
and development of the root system we have discussed some of
most prominent approaches for studying LR development that
range from live-based methodologies to high-throughput tech-
nologies, combined with predictions from computer models of
LR morphogenesis.

LATERAL ROOT FORMATION AND DEVELOPMENT IN LIGHT
OF REAL-TIME IMAGING
Implementation of the modern imaging techniques enabled to
address longstanding questions on the LR organogenesis at quali-
tatively new level. In particular real-time imaging with high tissue
resolution have provided a close spatio-temporal view on the early
phases of lateral root initiation (LRI) and brought new insights
into the dynamics of LR organogenesis.

In Arabidopsis thaliana, within the developmental window
the position of the newly initiated LR is defined, i.e., the root
zone where the cells exhibit the highest competence to initiate
LRs (Dubrovsky et al., 2006). Early attempts to monitor LRI
dynamics revealed that early events resulting in LRI correlate

www.frontiersin.org December 2013 | Volume 4 | Article 537 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/journal/10.3389/fpls.2013.00537/abstract
http://www.frontiersin.org/people/u/113134
http://www.frontiersin.org/people/u/124575
http://community.frontiersin.org/people/EvaBenkova/25902
mailto:eva.benkova@ist.ac.at
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Systems_Biology/archive


Cuesta et al. Systems biology on lateral root organogenesis

FIGURE 1 | Spatiotemporal control of lateral root organogenesis in

primary root. Priming of LRP precedes LR initiation and occurs in the

basal meristem. Developmental window defines the occurrence of the FC
establishment and most distal LRI, and LRPs develop and emerge through
adjacent tissues in the differentiated part of the root. Correlation between
the root zones (apical and basal meristem, developmental window,
differentiation zone) with phases of LR development (priming, founder
cells, LR initiation, LR primordia) along with the main molecular events are
presented. The oscillatory mechanism that determines LR positioning as
reported by DR5::LUC (auxin response marker) and GATA23 is depicted
(green dots).

with regular fluctuations of an auxin sensitive reporter DR5::β-
glucuronidase (GUS) in the protoxylem cells in the basal root
meristem (De Smet et al., 2007). This recurrent enhancement
of auxin activity, named priming, occurs with regular intervals
of approximately 15 h, corresponding with the frequency of LRI
during root growth. Later by the implementation of a real-time
monitoring system using the DR5::LUCIFERASE reporter, more
detailed studies of LRI dynamics could be performed (Moreno-
Risueno et al., 2010). Luciferase imaging confirmed the oscillatory
nature of the auxin response in the root, and correlated pulses
of luciferase activity with prebranch sites that precede the estab-
lishment of static points where LRs are formed (Moreno-Risueno
et al., 2010). Application of high-throughput transcriptome pro-
filing synchronized with the oscillatory auxin response led to
the discovery that besides auxin, a complex network of oscillat-
ing transcription factors contributes in setting up a prebranch
site.

Another approach that combined the high end real-time imag-
ing with computational modeling pointed out that the change in
a shape of root cells as a consequence of gravitropic or mechan-
ical bending redirects auxin flow toward pericycle cells, thereby
resulting in an auxin accumulation in these cells that triggers LRI
(Ditengou et al., 2008; Laskowski et al., 2008).

The next step in LR formation after priming and founder cell
(FC) specification is the initiation of primordia organogenesis
by series of anticlinal divisions. The identification of mutants in
which despite FC establishment no LRI takes place (Celenza et al.,
1995; DiDonato et al., 2004; Dubrovsky et al., 2008; De Rybel
et al., 2010) indicates that the specification of FCs does not lead
by default to LRI and that these two events might be uncou-
pled. Real-time imaging of LRI has shown that auxin continues
to accumulate in the FCs, until it reaches a maximum just prior
the actual initiation event (De Rybel et al., 2010). Later, an auxin
reflux pathway, which is transiently established during the early
phases of LRI, was found. This reflux via the PIN-formed (PIN3)
auxin efflux carrier reinforces the auxin flow from the endoder-
mal cells to the FCs, thereby enabling to reach the auxin threshold
required to transit from founder to LRI phases (Marhavý et al.,
2013).

LRP organogenesis continues by a series of cell divisions and
differentiation coordinated by auxin. An auxin gradient with a
maximum at the primordia tip is instructive for proper organ for-
mation, and modulation of auxin distribution interferes with the
progress of LR organogenesis (Benková et al., 2003). High reso-
lution imaging of LRPs in real time turned out to be a powerful
approach to bring further insights into the mechanisms control-
ling LRP organogenesis. 3D/4D image analysis (Lucas et al., 2013)
revealed that early stage LRPs exhibit tangential divisions that
create a ring of cells enclosing a population of rapidly dividing
cells. The division patterns in the latter cell population during
LRP morphogenesis are not stereotypical, although the shape of
new LRPs is highly conserved. Interestingly, manipulating the
properties of overlaying tissues disrupted LRP morphogenesis,
indicating that the interaction with overlaying tissues might be
more important for LRP morphogenesis than the precise division
pattern.

Recently, monitoring LRP development when cytokinin is
present revealed a rapid change in the PIN1 auxin efflux carriers
expression caused by this hormone. Based on these observa-
tions cytokinin was proposed to interfere with LR organogenesis
through regulation of the constitutive cycling of PIN1 by its
alternative sorting to lytic vacuoles and subsequent degradation
(Marhavý et al., 2011).

Similarly, understanding LR emergence and their interplay
with surrounding tissues rapidly advanced with improved imag-
ing techniques. In light of these observations it became clear that
LR emergence is a tightly coordinated process during which auxin
acts as local inductive signal to control cell separation in overlay-
ing tissues (Swarup et al., 2008; Péret et al., 2012; Kumpf et al.,
2013; Lucas et al., 2013). Moreover, applying real-time imaging
improved our view on the acquisition of LR gravity sensing prop-
erties when emerging out of the parental root. The regulation
of the gravitropic response of LRs, defining the gravitropic set-
point angle, is crucial for the radial expansion of the root system
(plagiotropism). Real-time analysis demonstrated that acquiring
a gravity sensitive stage strongly correlates with the modulation
of asymmetric auxin transport rates in LR columella, the differ-
entiation of statoliths and the establishment of a connection to
the primary root vasculature (Guyomarc’h et al., 2012; Rosquete
et al., 2013).
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GENETIC STUDIES
A traditional strategy to identify the molecular components
and mechanisms involved in a developmental process is for-
ward genetics. Chemical agents (e.g., ethyl methanesulfonate) or
radiation are used to induce mutations causing a certain pheno-
type, and using a mapping strategy the responsible gene can be
identified (Lukowitz et al., 2000).

This approach has been successfully applied to reveal key
components of LR formation (Table 1). Early screens based on
the LR phenotype by Celenza et al. (1995) identified the aber-
rant lateral root formation (alf ) mutants. Three different alf
mutants were characterized: (i) alf1-1, with an increased num-
ber of LRs caused by IAA overproduction, turned out to be an
allele of SUPERROOT1 (SUR1) and ROOTY1 (RTY1) [Boerjan
et al. (1995) and King et al. (1995), respectively]; (ii) alf3-1, with
arrested LRPs, that can be rescued by exogenous application of
auxin; and (iii) alf4-1, unable to form LRs. Further work was
done on the latter mutant by DiDonato et al. (2004), showing
that ALF4 is required to maintain the developmental plasticity of
pericycle cells and their meristem-like properties. Hence, alf4-1
can perceive the LR induction signal but initiation cannot proceed
because the xylem-adjacent pericycle cells cannot divide, since a
mitotically active state is not maintained in the mutant. Another
screen based on LR abundance has identified additional com-
ponents specifically involved in the early phases of LRI, such as
Reduces Lateral root Formation (RLF) (Ikeyama et al., 2010). The
RLF gene codes for a cytosolic protein containing a cytochrome
b5-like heme/steroid binding domain, and it seems to be involved
in the activation of pericycle cell divisions at LRI sites downstream
of auxin signaling.

Besides root oriented screens, investigation of other plant
phenotypes (e.g., auxin defects, shoot appearance) has revealed
remarkable components of LR formation and development. A
screen for mutants defective in the shoot gravitropic response led
to the identification of the solitary root-1 (slr-1) mutant that com-
pletely lacks LRs (Fukaki et al., 2002). The mutation in IAA14
belonging to the Aux/IAA auxin signaling repressor gene fam-
ily stabilizes the IAA14 protein and as a consequence the auxin
dependent initiation of LRs is disrupted. In efforts to reveal addi-
tional components of this SLR-mediated pathway, a suppressor
screening was conducted on slr-1, identifying mutants such as slr-
1R1 (Fukaki et al., 2002) or SSL2 (Fukaki et al., 2006). In the case
of slr-1R1, an intragenic suppressor of slr-1, root hair formation
is restored, but LR formation gets poorly recovered, indicating
that LR and root hair formation require different mechanisms
involving SLR/IAA14. The second mutant identified (pickel/ssl2)
is an extragenic suppressor of slr-1. PICKEL/SSL2 is a homolog
of the animal chromatin-remodeling factor CHD3/Mi-2, impli-
cating a role for chromatin remodeling mediated by PKL/SSL2
in the negative regulation of auxin-mediated LR formation in
Arabidopsis.

Also screens targeting auxin signaling pathway resulted in the
identification of mutants defective in LR organogenesis, high-
lighting the importance of auxin signaling in LR formation. That
is the case for the auxin receptors TIR1 and related F box pro-
teins AFB1, 2 and 3 (Dharmasiri et al., 2005). The loss of these
genes resulted in a progressive decrease in auxin response during

Table 1 | Summary of the genes involved in LR initiation and

development, including those summarized in Casimiro et al. (2003),

De Smet et al. (2006) and Péret et al. (2009).

Gene Mutant LR phenotype Publication

ABA1 aba1 Inhibition of LR Vartanian, 1996;
Signora et al., 2001

ABI3 abi3-6 Required for
correct auxin
response in LR

Brady et al., 2003

ABI4 abi4 Inhibition of LR Signora et al., 2001

ABI5 abi5 Inhibition of LR Signora et al., 2001

ACR4* acr4 Increased LR De Smet et al., 2008

AFB1 afb1 Decrease auxin
response on LR

Dharmasiri et al.,
2005

AFB2 afb2

AFB3 afb3

AGB1 agb1-1, agb1-2 Increased LR Ullah et al., 2003

ALF1/SUR1/
RTY1*

alf1-1/sur1/rty1 Increased LR Boerjan et al., 1995;
Celenza et al., 1995;
King et al., 1995

ALF3* alf3-1 Arrested LR Celenza et al., 1995

ALF4* alf4-1 Lack of LR Celenza et al., 1995;
DiDonato et al., 2004

ARABIDILLO arabidillo1/2 Reduced LR Coates et al., 2006

ARF7/ARF19* arf7xarf19 Lack of LR Okushima et al.,
2005

ARF8 arf8-1 Increased LR Tian et al., 2004

Overexpression
35s::ARF8

Reduced LR

ARF 10/16/17 Overexpression
ARF10/16/17

Reduced LR Mallory et al., 2005;
Wang et al., 2005

ARR3 arr3 Reduced LR To et al., 2004

ARR4 arr4

ARR5 arr5

ARR6 arr6

ARR8 arr8

ARR9 arr9

ATHB-2 35s::ATHB-2 Reduced LR Steindler et al., 1999

reverse ATHB-2
sequence
35s::αATHB-2

Increased LR

ATHB-8 Overexpression Reduced LR Baima et al., 2001

AUX1* aux1 alleles Reduced LR Marchant et al., 2002

AXR1 axr1-3, axr1-12 Reduced LR Lincoln et al., 1990

AXR2* axr2-1/iaa7 Increased LR Nagpal et al., 2000

AXR4 axr4-1, axr4-2,
axr4-1 axr1-3

Reduced LR Hobbie and Estelle,
1995

AXR6 axr6-1, axr6-2 Reduced LR Hobbie et al., 2000

(Continued)
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Table 1 | Continued

Gene Mutant LR phenotype Publication

BRX2 brx-2 Increased LR (on
cytokinin)

Li et al., 2009

CEG ceg Increased LR Dong et al., 2006

CKX1 Overexpression
35s::CKX1

Increased LR Werner et al., 2003

CKX3 Overexpression
35s::CKX1

Increased LR Werner et al., 2003

DFL1 dfl1-D, sense
35s::DFL1

Reduced LR Nakazawa et al.,
2001

antisense
35s::DFL1as

Increased LR

E2Fa* E2Fa Reduced LR Berckmans et al.,
2011

ERA1 era1-2 Increased LR Brady et al., 2003

ETA3 eta3 Reduced LR Gray et al., 2003

GNOM gnom alleles Reduced LR Geldner et al., 2004

GPA1 gpa1-1, gpa1-2 Reduced LR Ullah et al., 2003

HAT2 Overexpression Reduced LR
elongation

Sawa et al., 2002

HOBBIT hbt allele LR meristem
defect

Willemsen et al.,
1998

HY5 hy5-1, hy5-Ks50 Increased LR Oyama et al., 1997

IAA1 axr5-1 Reduced LR (on
auxin)

Yang et al., 2004

IAA3* shy2-2 Reduced LR Tian and Reed, 1999

shy2-22, shy2-24 Increased LR

IAA14* slr-1 Lack of LR Fukaki et al., 2002

slr-1R1 Poorly restored
LR

PICKLE/SSL2 Partial restored
LR

Fukaki et al., 2006

IAA18 iaa18/crane Reduced LR Uehara et al., 2008

IAA19 msg2-1 Reduced LR Tatematsu et al.,
2004

IAA28* iaa28-1 Reduced LR Rogg et al., 2001

IAR3 ilr1 iar3 ill2 Reduced LR Rampey et al., 2004

ILL2

ILR1

ILR2 ilr2-1 Reduced LR Magidin et al., 2003

KNAT6 35s::RNAi Increased LR Dean et al., 2004

KRP2 35s::KRP2 Reduced LR Himanen et al., 2002

LAX3* lax3 Reduced LR Swarup et al., 2008

(Continued)

Table 1 | Continued

Gene Mutant LR phenotype Publication

LIN1 lin1 No LR
repression

Malamy and Ryan,
2001

MRP5* mrp5-1 Increased LR Gaedeke et al., 2001

NAC1 Antisense
35s::NAC1

Reduced LR Xie et al., 2002

Overexpression
35s::NAC1

Increased LR

PAS1 pas1 Reduced LR Faure et al., 1998;
Vittorioso et al., 1998

PAS2 pas2 Increased LR Faure et al., 1998;
Bellec et al., 2003

PAS3 pas3 Reduced LR Faure et al., 1998

PGP4 pgp4 Increased LR Santelia et al., 2005

PIN1* Overexpression
35s::PIN1

Delay LR
development

Benková et al., 2003

PIN3* pin1 pin,3 pin3
pin7

Reduced LR

PIN4 pin4 pin7, pin1
pin4 pin7, pin1
pin3 pin4

PIN7* pin1 pin3 pin7

PINOID Overexpression
35s::PID

Reduced LR Christensen et al.,
2000; Benjamins
et al., 2001

PLT1 plt1 plt2 Increased LR Aida et al., 2004

PLT2

PXA1 pxa1 Reduced LR Zolman et al., 2001

RanBP1c Antisense
AtRanBP1c

Reduced LR Kim et al., 2001

RAV1 Overexpression Delay LR
development

Hu et al., 2004

RCN1 rcn1 LR growth less
NPA sensitive

Rashotte et al., 2001

RIB1 rib1 Increased LR Poupart and Waddell,
2000

RLF* rlf-1 Reduced LR Ikeyama et al., 2010

RML1 rml1 Arrested LR Cheng et al., 1995

RML2 rml2 Lack of LR Cheng et al., 1995

ROP2 CA-rop2 Increased LR Li et al., 2001

DN-rop2 Reduced LR

SBR sbr Reduced LR Subramanian et al.,
2002

(Continued)
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Table 1 | Continued

Gene Mutant LR phenotype Publication

SEU seu-3 Reduced LR Pfluger and
Zambryski, 2004

SINAT5 Overexpression
35s::SINAT5

Reduced LR Xie et al., 2002

Dominant
negative
35s::SINAT5
(C49S)

Increased LR

SUR1 sur1 Increased LR Seo et al., 1998

SUR2 sur2/rnt1 Increased LR Delarue et al., 1998;
Barlier et al., 2000;
Bak et al., 2001

TIR1 tir1-1 Reduced LR Ruegger et al., 1998;
Dharmasiri et al.,
2005

TIR3 (BIG) tir3-1,
asa1/umb1

Reduced LR Ruegger et al., 1997;
Gil et al., 2001;
Kanyuka et al., 2003

WAK4 DEX-induced
WAK4 antisense

Inhibition LR
development

Lally et al., 2001

XBAT32 xbat32-1 Reduced LR Nodzon et al., 2004

XPL1 xipotl Increased LR Cruz-Ramírez et al.,
2004

YDK1 ydk1-D,
35s::YDK1

Reduced LR Takase et al., 2004

*Genes discussed within this review.

LR formation. Several Aux/IAA gain-of-function mutants, like
shy2/iaa3 (Tian and Reed, 1999) or iaa28-1 (Rogg et al., 2001)
exhibited dramatically reduced number of LRs, or like axr2-
1/iaa7 (Nagpal et al., 2000) showed an increased number of
LRs. Similarly, the forward genetics approach has been employed
to seek for new molecular components mediating the interac-
tion between the auxin-cytokinin pathways during LR formation
(Bielach et al., 2012b). Several primordia on auxin and cytokinin
(pac) mutants in which the basal LRI process was not affected,
but a cytokinin resistance phenotype appeared in the presence
of auxin, might reveal new players balancing the auxin-cytokinin
developmental output.

An alternative strategy is the reverse genetics approach, which
is the analysis of mutants in genes selected based on prior knowl-
edge about their role in specific pathways connected with LR
formation. That is the case of the Auxin Response Factor (ARF)
gene family, encoding transcriptional regulators that are core
components of the auxin signaling pathway (Ulmasov et al.,
1999). A PCR-based screening approach was conducted, identify-
ing T-DNA insertions affecting the ARF genes (Okushima et al.,
2005). By mutant phenotype characterization of several members
of this family (specifically ARF7 and ARF19), their role in LR

formation was discovered. Similarly, by detailed mutant analyses
the function of AUX1 and LAX3 auxin influx and PIN1, PIN3,
PIN7, PGP1 and PGP19 efflux transporters in different phases
of LR organogenesis has been recognized (Gaedeke et al., 2001;
Marchant et al., 2002; Benková et al., 2003; Mravec et al., 2008;
Swarup et al., 2008).

PROTEIN INTERACTION STUDIES
The lasting challenge in elucidating how LR formation is con-
trolled is a complete dissection of the regulatory pathway compo-
nents. DNA-protein or protein-protein interaction studies, such
as yeast one-hybrid or yeast two-hybrid, are powerful approaches
to uncover more new molecular players. By implementing this
approach in the study of LR formation and development, a direct
molecular link between auxin signaling, cell cycle machinery
and LRI has been shown (Berckmans et al., 2011). The E2Fa
transcription factor (regulator of cell cycle initiation) has been
identified as a direct target of the LATERAL ORGAN BOUNDARY
DOMAIN18/ASYMMETRIC LEAVES2-LIKE20 (LBD18/ASL20)
transcription factor downstream of auxin signaling and its
role in triggering the first asymmetric division during LRI
has been demonstrated (Berckmans et al., 2011). Additionally,
by tandem affinity purification (protein-protein interaction)
other proteins involved were identified, including LBD33. The
data suggest that a LBD18/LBD33 dimer is necessary for E2Fa
expression.

TRANSCRIPT PROFILING STUDIES
Genome-wide transcript profiling is a high-throughput tech-
nology which enables the efficient evaluation of the complete
transcript regulation in a certain process (Hennig et al., 2003).
Besides particular genes, the identification and analysis of clusters
of co-expressed genes might provide important insights on the
physical or functional connection between gene products during
the regulation of certain developmental process.

The true challenge in identifying regulatory genes involved in
LR organogenesis by genome-wide profiling arises from the fact
that LRI is restricted in time and space to a small number of per-
icycle cells hidden within surrounding primary root tissues. To
circumvent this obstacle, a lateral root-inducible system (LRIS)
was implemented to boost the frequency of LRI in a largely syn-
chronized manner (Himanen et al., 2002). By combining LRIS
with transcript profiling, Himanen et al. (2004) identified genes
linked with early phases of LR initiation. Besides expected tar-
gets, such as components of the auxin signaling pathway and the
cell cycle, clusters of regulatory genes co-regulated in course of
the early phases of LRI were recognized. Later, using the LRIS
set up, transcript profiles of the control and the lateral root-
less solitary root/iaa14 (slr-1) mutant were compared to extract
genes linked with LRI (Vanneste et al., 2005). Within the genes
identified, cell division-related genes were found (APC8/CDC23,
PCNA1), directly linking auxin signaling and cell cycle activa-
tion during LRI both at the S-phase and the G2-to-M transi-
tion. Similarly, by extracting the auxin-regulated genes whose
expression is strongly suppressed in the arf7 and arf19 mutants
defective in LR organogenesis LATERAL ROOT PRIMORDIUM1
(LRP1), AUXIN-REGULATED GENE INVOLVED IN ORGAN
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SIZE (ARGOS) or LATERAL ORGAN BOUNDARIES DOMAIN
(LBD), family genes were uncovered for their role in LR organo-
genesis (Okushima et al., 2005).

Although the LRIS significantly increased the frequency of
the LRIs, the limitation of tissue specificity was not overcome,
since the material used included the whole root segment and
contaminating tissues. Considering that a few cells within the
pericycle layer are involved in a process such as LR formation,
it is very likely that some important regulators could be missed.
An elegant solution for this appeared to be an implementa-
tion of the Fluorescent Activated Cell Sorting (FACS) technique
in combination with transcriptome profiling. To monitor the
transcriptome of the xylem pole pericycle cells exclusively, the
Gal4-GFP enhancer trap line J0121 with pericycle-specific expres-
sion was used (Laplaze et al., 2005). This improved strategy led to
the identification of the membrane-localized receptor-like kinase
ARABIDOPSIS CRINKLY4 (ACR4), specifically transcribed in
the small daughter cell after the first asymmetric pericycle cell
division. The ACR4 is a key factor in promoting formative cell
divisions in the pericycle, as well as in constraining the number
of these divisions once organogenesis has been started (De Smet
et al., 2008).

Later phases of LR development have also been targeted by
transcript profiling studies (i.e., high-throughput quantitative
RT-PCR). Namely, impact of the environmental signals, such as
salt stress on primordia development has been examined (Duan
et al., 2013). It was disclosed that the water stress-associated
hormone abscisic acid (ABA) mediates suppression of LR emer-
gence, acting primarily at the endodermis by tissue-specific ABA
signaling pathways.

With the extensive increase of data generated by genome-wide
profiling interesting targets might be easily overlooked. Hence,
specialized algorithms and computational pipelines are devel-
oped to refine data mining and evaluation. A recently released
spatio-temporal transcriptional map of the Arabidopsis root (the
RootMap) (Brady et al., 2007) became an outstanding tool for
evaluating expression patterns and gene correlations in root tis-
sues.

A new tool named Visual Lateral Root Transcriptome
Compendium (Visual RTLC) was developed by Parizot et al.
(2010), in order to combine and compare the different datasets
focused on LR organogenesis. These new appearing methods for
data mining provide great opportunities to scale up the identifi-
cation of novel regulators of LR organogenesis.

CHEMICAL GENOMICS
Using the above mentioned approaches, crucial components of
the LR regulation have been identified, and functional connec-
tions between key regulatory pathways (auxin, cytokinin, cell
cycle-related), underlying root system architecture control, have
been recognized.

Lately, the chemical biology opened new ways to study bio-
logical systems. The ability of chemical compounds to enhance,
mimic, interfere or block a specific developmental process rises
as a powerful tool to discover new regulatory components. The
chemical approach is based on the ability of small synthetic
molecules to modify the activity of proteins or pathways, resulting

in the understanding of the protein function at a level that would
be difficult to achieve through gene-based perturbation (Robert
et al., 2009). Additionally, a tight temporal control can be accom-
plished, allowing for instance to overcome limitations related to
mutational approaches (e.g., the long-term effect of disrupting
the process can lead to lethality). Even more, its combination
with other approaches, such as genomic studies, provides an addi-
tional power, i.e., the compound effect on a mutant that exhibits
a certain phenotype.

The high-throughput screening of the chemical library must
first be optimized in order to identify compounds that interfere
with a specific developmental process. Aimed at LR organo-
genesis, an efficient screening method based on the LRIS was
established (De Rybel et al., 2012; Audenaert et al., 2013). Using
this platform, a naxillin, the non-auxin-like synthetic molecule
that induces LR formation, was found as an activator of LRI, being
more effective than known synthetic or natural auxins (De Rybel
et al., 2012). A chemical approach combined with transcriptome
profiling showed that 2581 vs. 401 genes are de-regulated by either
auxin or naxilin, respectively, indicating a narrower mechanism
of naxillin action when compared to natural auxin (De Rybel
et al., 2012). Interestingly, genes involved in the early events of LR
development such as GATA23, LBD33, and LBD29, were found
to dominate in the naxillin induction profile. Forward genet-
ics resulted in the identification of the naxillin resistant 1 (nar1)
mutation in the IBR3 gene, linking naxillin activity with the regu-
lation of the peroxisomal IBA-to-IAA conversion to promote the
development of LRs.

COMPUTER MODELING APPROACHES
Computer models of plant development typically integrate exper-
imentally identified interactions between genes and proteins
(regulatory networks) to predict the dynamics of such regula-
tory networks in the developmental context (Prusinkiewicz and
Runions, 2012). Numerous computer models of LR development
have been developed to predict putative mechanisms underly-
ing LR morphogenesis. These computer models often integrate
experimental observations to identify a minimal mechanistic
framework for LRI (Laskowski et al., 2008; Lucas et al., 2008). For
example, mechanical deformation of cells was found to occur in
the curved region of the primary root and to dramatically affect
the size and shape of cells (Ditengou et al., 2008). Laskowski et al.
(2008) demonstrated that a subtle change in the cell shape can
be instructive for the auxin accumulation in pericycle cells and
thus LRI. They also proposed that a feedback between auxin and
expression of auxin influx carriers in pericycle cells further builds
up this auxin maximum and thus promotes the LRI (Swarup
et al., 2005; Laskowski et al., 2008; Péret et al., 2013). Hence,
the combination of mechanical tension and auxin feedback on its
transport can guide LR development in a self-organizing man-
ner. On the other hand, a model developed by Lucas et al.
(2008) suggests that root branching could be controlled by lateral
inhibition—a different mechanism that depends on competi-
tion or distance between initiation sites and already emerged LR
primordia.

Yet another approach attempted to approximate the com-
plexity of sub-cellular regulatory networks that involve crosstalk
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between auxin and cytokinin that could influence both size and
location of division and differentiation regions within the pri-
mary root as well as the putative periodicity of LR branching
(Muraro et al., 2011, 2013). This type of modeling approach
serves as a very useful tool to explore how dynamic response of
auxin-cytokinin interaction network might change with respect
to various mutant-like perturbations.

Finally computer modeling approaches have been applied
to understand the physics and mechanics of LR development
(Szymanowska-Pulka et al., 2012). Szymanowska-Pulka and col-
leagues reconstructed LRP morphogenesis based on anatomical
observations and proposed a dynamic model of LRP growth that
integrates acquisition of cell patterning that determines the final
shape of the organ. Similar to that model the combination of
live biological imaging, 3D/4D microscopic image reconstruction
and dynamic computer model, have also revealed the relevance
of coordinated patterning processes occurring in the proximity of
the developing LRP that are central to the proper emergence of
LRs (Lucas et al., 2013).

Taken together, a synergy of modeling and experimental efforts
presented herein is likely to further generate new insights in LR
patterning processes and ultimately broaden our understanding
of the complex root system architectures.

NOVEL TOOLS AND FUTURE PERSPECTIVES
GENETIC STUDIES: SEMI-AUTOMATED PHENOTYPE ANALYSIS
Developing methods based on acquiring and analyzing devel-
opmental processes in real-time are continuously improving.
Among others, the implementation of automated systems on
root phenotype analyses combined with accurate images is
a desirable feature. Fast and high-throughput phenotyping
methods were developed to monitor the dynamic of root
growth. For instance, the GiA Roots semi-automated soft-
ware tool for high-throughput analysis of root system architec-
ture (Galkovskyi et al., 2012), the semiautomated 3D in vivo
imaging and digital phenotyping pipeline that enables high-
throughput and accurate measurements of root system architec-
ture through time (Topp et al., 2013), or the RootNav image
analysis tool that allows the semiautomated quantification of
complex root system architectures (Pound et al., 2013) were
established.

Monitoring gene expression by live microscopy on a large
number of specimens growing under controlled conditions to
assess their spatio-temporal expression turns out to be another
challenge. For this purpose, a microfluidic device (RootArray)
where the roots are repeatedly imaged by confocal microscopy,
coupled with an image analysis platform that includes automated
real-time detection and tracking of samples, has been developed
(Busch et al., 2012). This platform provides the ability to compare
the reporter gene expression in Arabidopsis roots at tissue level in
different developmental zones.

GENETIC STUDIES: FAST-FORWARD GENETICS
A classical forward genetics approach implies the generation of
a large mapping population, a high density of genetic mark-
ers for achieving a high resolution mapping, and the screen-
ing for recombinants in order to define the genetic interval

where the mutation is placed (Lukowitz et al., 2000). Taking the
advantage of Next Generation Sequencing, fast-forward genetics
(SHOREmap pipeline) has been introduced, where the map-
ping is directly performed by sequencing (Schneeberger and
Weigel, 2011). The SHOREmap pipeline covers from mapping
to de novo marker identification during the sequencing pro-
cess, and final annotation of candidate mutations (Schneeberger
et al., 2009), hence profoundly increasing the efficiency of mutant
identification.

TRANSCRIPT PROFILING STUDIES: RNA SEQUENCING
An improved high-throughput transcript profiling technology—
RNA sequencing (RNA-seq), has appeared in the last years (Wang
et al., 2009). This innovative technique allows the evaluation of
the entire transcriptome. It can be used to determine the structure
of genes, their splicing patterns and other post-transcriptional
modifications, to detect rare and novel transcripts, and to quan-
tify the changing expression levels of each transcript. When
compared to microarrays, RNA-seq can detect all expressed genes
without the generation of an array of probes, with reduced back-
ground noise and large dynamic range. This turned out to be
particularly important in species such as tomato, where pub-
licly available microarrays cover only one-third of the complete
genome. The RNA-seq approach was used to analyze the tran-
scriptome of tomato roots with the main focus on the spatial
patterning and regulation of genes in the root by the hormones
cytokinin and auxin. This transcriptome analysis of hormone
regulation in tomato root revealed novel genes regulated by
each of these hormones and can further be utilized as a refer-
ence to conduct future research on tomato roots (Gupta et al.,
2013).

CONCLUDING REMARKS
Root system development is central for the plant to reach optimal
growth. Hence, understanding the mechanisms that determine
root architecture is of great agronomic importance, since they
provide a basis for targeted engineering of plant architecture, e.g.,
for regulating root growth and branching to exploit less nutri-
tious and arid soils. The availability of genome information has
made it possible to study the gene expression on a genome scale,
observing the behavior of many genes at a time, and obtain-
ing a comprehensive, dynamic molecular picture. In the systems
biology century, the only way to get insight in a developmen-
tal process is by combining synergistically the different available
techniques, which include the most novel tools and advances.
From this perspective, new available approaches are ready to
be undertaken to obtain deeper insight in LR formation and
development.
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