201 research outputs found

    A Buoyancy-Based Screen of Drosophila Larvae for Fat-Storage Mutants Reveals a Role for Sir2 in Coupling Fat Storage to Nutrient Availability

    Get PDF
    Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified 66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2 mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation irrespective of the sugar content of the diet

    Observation of the exceptional-point-enhanced Sagnac effect

    Get PDF
    Exceptional points (EPs) are special spectral degeneracies of non-Hermitian Hamiltonians that govern the dynamics of open systems. At an EP, two or more eigenvalues, and the corresponding eigenstates, coalesce. Recently, it was predicted that operation of an optical gyroscope near an EP results in improved response to rotations. However, the performance of such a system has not been examined experimentally. Here we introduce a precisely controllable physical system for the study of non-Hermitian physics and nonlinear optics in high-quality-factor microresonators. Because this system dissipatively couples counter-propagating lightwaves within the resonator, it also functions as a sensitive gyroscope for the measurement of rotations. We use our system to investigate the predicted EP-enhanced Sagnac effect and observe a four-fold increase in the Sagnac scale factor by directly measuring rotations applied to the resonator. The level of enhancement can be controlled by adjusting the system bias relative to the EP, and modelling results confirm the observed enhancement. Moreover, we characterize the sensitivity of the gyroscope near the EP. Besides verifying EP physics, this work is important for the understanding of optical gyroscopes

    A randomized controlled trial to investigate the influence of low dose radiotherapy on immune stimulatory effects in liver metastases of colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insufficient migration and activation of tumor specific effector T cells in the tumor is one of the main reasons for inadequate host anti-tumor immune response. External radiation seems to induce inflammation and activate the immune response. This phase I/II clinical trial aims to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with colorectal liver metastases.</p> <p>Methods/Design</p> <p>This is an investigator-initiated, prospective randomised, 4-armed, controlled Phase I/II trial. Patients undergoing elective hepatic resection due to colorectal cancer liver metastasis will be enrolled in the study. Patients will receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation targeted to their liver metastasis. Radiation will be applied by external beam radiotherapy using a 6 MV linear accelerator (Linac) with intensity modulated radiotherapy (IMRT) technique two days prior to surgical resection. All patients admitted to the Department of General-, Visceral-, and Transplantion Surgery, University of Heidelberg for elective hepatic resection are consecutively screened for eligibility into this trial, and written informed consent is obtained before inclusion. The primary objective is to assess the effect of active local external beam radiation dose on, tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include radiogenic treatment toxicity, postoperative morbidity and mortality, local tumor control and recurrence patterns, survival and quality of life. Furthermore, frequencies of systemic tumor reactive T cells in blood and bone marrow will be correlated with clinical outcome.</p> <p>Discussion</p> <p>This is a randomized controlled patient blinded trial to assess the safety and efficiency of low dose radiotherapy on metastasis infiltrating T cells and thus potentially enhance the antitumor immune response.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01191632">NCT01191632</a></p

    Inhibition of Post-Synaptic Kv7/KCNQ/M Channels Facilitates Long-Term Potentiation in the Hippocampus

    Get PDF
    Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M1 mAChR on CA1 pyramidal cells inhibit both small conductance Ca2+-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca2+calcium influx through postsynaptic NMDA receptors (NMDAR). Inhibition of Kv7 channels is also reported to facilitate LTP but the mechanism of action is unclear. Here, we show that inhibition of Kv7 channels with XE-991 facilitated LTP induced by theta burst pairing at Schaffer collateral commissural synapses in rat hippocampal slices. Similarly, negating Kv7 channel conductance using dynamic clamp methodologies also facilitated LTP. Negation of Kv7 channels by XE-991 or dynamic clamp did not enhance synaptic NMDAR activation in response to theta burst synaptic stimulation. Instead, Kv7 channel inhibition increased the amplitude and duration of the after-depolarisation following a burst of action potentials. Furthermore, the effects of XE-991 were reversed by re-introducing a Kv7-like conductance with dynamic clamp. These data reveal that Kv7 channel inhibition promotes NMDAR opening during LTP induction by enhancing depolarisation during and after bursts of postsynaptic action potentials. Thus, during the induction of LTP M1 mAChRs enhance NMDAR opening by two distinct mechanisms namely inhibition of KCa2 and Kv7 channels

    Differential lipid dependence of the function of bacterial sodium channels

    Get PDF
    The lipid bilayer is important for maintaining the integrity of cellular compartments and plays a vital role in providing the hydrophobic and charged interactions necessary for membrane protein structure, conformational flexibility and function. To directly assess the lipid dependence of activity for voltage-gated sodium channels, we compared the activity of three bacterial sodium channel homologues (NaChBac, NavMs, and NavSp) by cumulative 22Na+ uptake into proteoliposomes containing a 3:1 ratio of 1-palmitoyl 2-oleoyl phosphatidylethanolamine and different “guest” glycerophospholipids. We observed a unique lipid profile for each channel tested. NavMs and NavSp showed strong preference for different negatively-charged lipids (phosphatidylinositol and phosphatidylglycerol, respectively), whilst NaChBac exhibited a more modest variation with lipid type. To investigate the molecular bases of these differences we used synchrotron radiation circular dichroism spectroscopy to compare structures in liposomes of different composition, and molecular modeling and electrostatics calculations to rationalize the functional differences seen. We then examined pore-only constructs (with voltage sensor subdomains removed) and found that in these channels the lipid specificity was drastically reduced, suggesting that the specific lipid influences on voltage-gated sodium channels arise primarily from their abilities to interact with the voltage-sensing subdomains

    Clinical outcomes and prognostic factors in patients with breast diffuse large B cell lymphoma; Consortium for Improving Survival of Lymphoma (CISL) study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The breast is a rare extranodal site of non-Hodgkin lymphoma, and primary breast lymphoma (PBL) has been arbitrarily defined as disease localized to one or both breasts with or without regional lymph nodes involvement. The aim of this study was to evaluate the clinical outcomes in patients with diffuse large B cell lymphoma (DLBCL) and breast involvement, and to find the criteria of PBL reflecting the outcome and prognosis.</p> <p>Methods</p> <p>We retrospectively analyzed data from 68 patients, newly diagnosed with DLBCL and breast involvement at 16 Korean institutions between January 1994 and June 2009.</p> <p>Results</p> <p>Median age at diagnosis was 48 years (range, 20-83 years). Forty-three (63.2%) patients were PBL according to previous arbitrary criteria, sixteen (23.5%) patients were high-intermediate to high risk of international prognostic index. The patients with one extranodal disease in the breast (OED) with or without nodal disease were 49 (72.1%), and those with multiple extranodal disease (MED) were 19 (27.9%). During median follow-up of 41.5 months (range, 2.4-186.0 months), estimated 5-year progression-free survival (PFS) was 53.7 ± 7.6%, and overall survival (OS) was 60.3 ± 7.2%. The 5-year PFS and OS was significantly higher for patients with the OED group than those with the MED group (5-year PFS, 64.9 ± 8.9% vs. 27.5 ± 11.4%, p = 0.001; 5-year OS, 74.3 ± 7.6% vs. 24.5 ± 13.0%, p < 0.001). In multivariate analysis, MED (hazard ratio [HR], 3.61; 95% confidence interval [CI], 1.07-12.2) and fewer than four cycles of systemic chemotherapy with or without local treatments (HR, 4.47; 95% CI, 1.54-12.96) were independent prognostic factors for worse OS. Twenty-five (36.8%) patients experienced progression, and the cumulative incidence of progression in multiple extranodal sites or other than breasts and central nervous system was significantly different between the OED group and the MED group (5-year cumulative incidence, 9.7 ± 5.4% vs. 49.0 ± 15.1%, p = 0.001).</p> <p>Conclusions</p> <p>Our results show that the patients included in OED group, reflecting different treatment outcome, prognosis and pattern of progression, should be considered as PBL in the future trial. Further studies are warranted to validate our suggested criteria.</p

    Evidence of Increased Muscle Atrophy and Impaired Quality of Life Parameters in Patients with Uremic Restless Legs Syndrome

    Get PDF
    BACKGROUND: Restless Legs Syndrome is a very common disorder in hemodialysis patients. Restless Legs Syndrome negatively affects quality of life; however it is not clear whether this is due to mental or physical parameters and whether an association exists between the syndrome and parameters affecting survival. METHOD#ENTITYSTARTX003BF;LOGY/PRINCIPAL FINDINGS: Using the Restless Legs Syndrome criteria and the presence of Periodic Limb Movements in Sleep (PLMS/h >15), 70 clinically stable hemodialysis patients were assessed and divided into the RLS (n = 30) and non-RLS (n = 40) groups. Physical performance was evaluated by a battery of tests: body composition by dual energy X ray absorptiometry, muscle size and composition by computer tomography, while depression symptoms, perception of sleep quality and quality of life were assessed through validated questionnaires. In this cross sectional analysis, the RLS group showed evidence of thigh muscle atrophy compared to the non-RLS group. Sleep quality and depression score were found to be significantly impaired in the RLS group. The mental component of the quality of life questionnaire appeared significantly diminished in the RLS group, reducing thus the overall quality of life score. In contrast, there were no significant differences between groups in any of the physical performance tests, body and muscle composition. CONCLUSIONS: The low level of quality of life reported by the HD patients with Restless Legs Syndrome seems to be due mainly to mental health and sleep related aspects. Increased evidence of muscle atrophy is also observed in the RLS group and possibly can be attributed to the lack of restorative sleep

    Behavioural Significance of Cerebellar Modules

    Get PDF
    A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control

    Differential Proteome Analysis of Bone Marrow Mesenchymal Stem Cells from Adolescent Idiopathic Scoliosis Patients

    Get PDF
    Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformity of the spine. The cause and pathogenesis of scoliosis and the accompanying generalized osteopenia remain unclear despite decades of extensive research. In this study, we utilized two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) to analyze the differential proteome of bone marrow mesenchymal stem cells (BM-MSCs) from AIS patients. In total, 41 significantly altered protein spots were detected, of which 34 spots were identified by MALDI-TOF/TOF analysis and found to represent 25 distinct gene products. Among these proteins, five related to bone growth and development, including pyruvate kinase M2, annexin A2, heat shock 27 kDa protein, γ-actin, and β-actin, were found to be dysregulated and therefore selected for further validation by Western blot analysis. At the protein level, our results supported the previous hypothesis that decreased osteogenic differentiation ability of MSCs is one of the mechanisms leading to osteopenia in AIS. In summary, we analyzed the differential BM-MSCs proteome of AIS patients for the first time, which may help to elucidate the underlying molecular mechanisms of bone loss in AIS and also increase understanding of the etiology and pathogenesis of AIS
    corecore