3,372 research outputs found

    Revisiting the Bottom Quark Forward-Backward Asymmetry AFBA_{\rm {FB}} in Electron-Positron Collisions

    Full text link
    The bottom quark forward-backward asymmetry AFBA_{\rm{FB}} is a key observable in electron-positron collisions at the Z0Z^{0} peak. In this paper, we employ the Principle of Maximum Conformality (PMC) to fix the αs\alpha_s-running behavior of the next-to-next-to-leading order QCD corrections to AFBA_{\rm{FB}}. The resulting PMC scale for this AFBA_{\rm{FB}} is an order of magnitude smaller than the conventional choice μr=MZ\mu_r=M_Z. This scale has the physically reasonable behavior and reflects the virtuality of its QCD dynamics, which is independent to the choice of renormalization scale. Our analyses show that the effective momentum flow for the bottom quark forward-backward asymmetry should be μr≪MZ\mu_r\ll M_Z other than the conventionally suggested μr=MZ\mu_r=M_Z. Moreover, the convergence of perturbative QCD series for AFBA_{\rm{FB}} is greatly improved using the PMC. Our prediction for the bare bottom quark forward-backward asymmetry is refined to be AFB0,b=0.1004±0.0016A^{0,b}_{\rm FB}=0.1004\pm0.0016, which diminishes the well known tension between the experimental determination for this (pseudo) observable and the respective Standard Model fit to 2.1σ2.1\sigma.Comment: 8 pages, 2 figures, published versio

    Mechanism of byproducts formation in the isobutane/butene alkylation on HY zeolites

    Get PDF
    Submicron-size HY zeolites with a particles size of 200–700 nm were synthesized employing a crystal precipitation method in this study. The catalytic activity for the isobutane/butene alkylation was evaluated. The results indicated that butene conversion was above 90% and the selectivity of expected products (C8) was nearly at 90% within 72 h. The micropores-blocking and coverage of acid sites resulting from high hydrocarbons increased the difficulty for the diffusion of products to the bulk and inhibited the adsorption of reactant on activity sites, which caused deactivation of catalyst. The ultimate C12 content in alkylate oil, stemmed from trimerization of butene, was reduced via the addition reaction with butene to C16 and the cracking to C5–C7. The formation mechanisms and transformation processes of byproducts in alkylate oil revealed that the source of C9–C11 switched from cracking of C16+ to the addition of C5–C7 carbocations with butene when acid sites concentration was reduced by accumulating oligomers

    Effects of maternal enflurane exposure on NR2B expression in the hippocampus of their offspring

    Get PDF
    Este trabalho objetiva o estudo da patogênese de deficiência no aprendizado e memória de prole de ratos resultante da anestesia maternal por enflurano, por meio da expressão da subunidade 2B do receptor do ácidoN-metil-D-aspártico (NR2B) no hipocampo dos filhotes. Dividiram-se, aleatoriamente, 30 fêmeas de ratos Sprague-Dawley em três grupos: controle (grupo C), exposição ao enflurano por 4 h (grupo E1) e por 8 h (grupo E2). De oito a 10 dias após o início da gravidez, os ratos dos grupos E1 e E2 inalaram enflurano 1,7% em 2 L/min de oxigênio, por 4 h e 8 h, respectivamente. Ratos do grupo C inalaram apenas 2 L/min de oxigênio. O labirinto de água de Morris foi empregado para analisar as funções de aprendizado e memória da cria em 20 e 30 dias após o nascimento. Utilizaram-se ensaios de RT-PCR e de imuno-histoquímica para medir os níveis de mRNA e expressão da proteína do NR2B, respectivamente. Em comparação com os ratos controle do grupo C, aqueles dos grupos E1 e E2 exibiram latências de escape mais longas, menor número de travessias na plataforma e menos tempo gasto no quadrante alvo no teste de exploração espacial (P ; 0.05) in terms of mRNA levels and protein expression of NR2B. The cognitive function of the offspring is impaired when maternal rats are exposed to enflurane during early pregnancy. A possible mechanism of this effect is related to the down-regulation of NR2B expression

    Beating the classical precision limit with spin-1 Dicke state of more than 10000 atoms

    Get PDF
    Interferometry is a paradigm for most precision measurements. Using NN uncorrelated particles, the achievable precision for a two-mode (two-path) interferometer is bounded by the standard quantum limit (SQL), 1/N1/\sqrt{N}, due to the discrete (quanta) nature of individual measurements. Despite being a challenging benchmark, the two-mode SQL has been approached in a number of systems, including the LIGO and today's best atomic clocks. Employing multi-mode interferometry, the SQL becomes 1/[(M−1)N]1/[(M-1)\sqrt{N}] using M modes. Higher precision can also be achieved using entangled particles such that quantum noises from individual particles cancel out. In this work, we demonstrate an interferometric precision of 2.42−1.29+1.76 2.42^{+1.76}_{-1.29}\,dB beyond the three-mode SQL, using balanced spin-1 (three-mode) Dicke states containing thousands of entangled atoms. The input quantum states are deterministically generated by controlled quantum phase transition and exhibit close to ideal quality. Our work shines light on the pursuit of quantum metrology beyond SQL.Comment: 11 pages, 6 figure

    Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment

    Get PDF
    Multi-degrees of freedom (DOF) parallel robot, due to its compact structure and high operation accuracy, is a promising candidate for medical rehabilitation devices. However, its controllability relating to the nonlinear characteristics challenges its interaction with human subjects during the rehabilitation process. In this paper, we investigated the control of a parallel robot system using fuzzy sliding mode control (FSMC) for constructing a simple controller in practical rehabilitation, where a fuzzy logic system was used as the additional compensator to the sliding mode controller (SMC) for performance enhancement and chattering elimination. The system stability is guaranteed by the Lyapunov stability theorem. Experiments were conducted on a lower limb rehabilitation robot, which was built based on kinematics and dynamics analysis of the 6-DOF Stewart platform. The experimental results showed that the position tracking precision of the proposed FSMC is sufficient in practical applications, while the velocity chattering had been effectively reduced in comparison with the conventional FSMC with parameters tuned by fuzzy systems

    Chemical Profiling and Comparison of Sangju Ganmao Tablet and Its Component Herbs Using Two-Dimensional Liquid Chromatography to Explore Compatibility Mechanism of Herbs

    Get PDF
    Sangju Ganmao tablet (SGT), a well-known Chinese patent medicine used to treat cold symptoms, is made from eight herbal medicines. In this study, an off-line hydrophilic interaction × reversed-phase two-dimensional liquid chromatography (HILIC × RP 2D-LC) method was developed to comprehensively separate the chemical constituents of SGT. Through optimization of the experimental conditions, a total of 465 peaks were finally detected in SGT, and the structures of 54 selected compounds were fully identified or tentatively characterized by quadrupole time-of-flight mass spectrometry (qTOF-MS) analysis. The established 2D-LC analysis showed high orthogonality (63.62%) and approximate 11-fold improvement in peak capacity (2399 and 1099, obtained by two calculation methods), in contrast to conventional one-dimensional RPLC separation. The eight component herbs of SGT were also respectively separated by using the 2D-LC system, and we found that a total of 12 peaks detected in SGT were not discovered in any component herbs. These newly generated chemical constituents would benefit better understanding of the compatibility mechanism of the component herbs. The strategy established in this study could be used for systematic chemical comparison of SGT and its component herbs, which contributes to exploration of herbal compatibility mechanism

    Construction and Evaluation of the Tumor-Targeting, Cell-Penetrating Multifunctional Molecular Probe iCREKA

    Get PDF
    A novel tumor stroma targeting and membrane-penetrating cyclic peptide, named iCREKA, was designed and labeled by fluorescein isothiocyanate (FITC) and positron emitter 18F to build the tumor-targeting tracers. The FITC-iCREKA was proved to have significantly higher cellular uptake in the glioma U87 cells in the presence of activated MMP-2 than that in absence of activated MMP-2 by cells fluorescence test in vitro. The tumor tissue fluorescence microscope imaging demonstrated that FITC-iCREKA accumulated in the walls of the blood vessels and the surrounding stroma in the glioma tumor at 1 h after intravenous injection. While at 3 h after injection, FITC-iCREKA was found to be uptaken in the tumor cells. However, the control FITC-CREKA can only be found in the tumor stroma, not in the tumor cells, no matter at 1 h or 3 h after injection. The whole-animal fluorescence imaging showed that the glioma tumor could be visualized clearly with high fluorescence signal. The microPET/CT imaging further demonstrated that 18F-iCREKA could target U87MG tumor in vivo from 30 min to 2 h after injection. The present study indicated the iCREKA had the capacity of tumor stroma targeting and the membrane-penetrating. It was potential to be developed as the fluorescent and PET tracers for tumor imaging

    The splicing factor SR2 is an important virulence factor of Toxoplasma gondii

    Get PDF
    Serine/arginine-rich (SR) proteins are key factors with important roles in constitutive and alternative splicing (AS) of pre-mRNAs. However, the role of SR splicing factors in the pathogenicity of T. gondii remains largely unexplored. Here, we investigated the role of splicing factor SR2, a homolog of Plasmodium falciparum SR1, in the pathogenicity of T. gondii. We functionally characterized the predicted SR2 in T. gondii by gene knockout and studied its subcellular localization by endogenous protein HA tagging using CRISPR-Cas9 gene editing. The results showed that SR2 was localized in the nucleus and expressed in the tachyzoite and bradyzoite stages. In vitro studies including plaque formation, invasion, intracellular replication, egress and bradyzoite differentiation assays showed that deletion of SR2 in type I RH strain and type II Pru strains had no significant effect on the parasite growth and bradyzoite differentiation (p > 0.05). Interestingly, the disruption of SR2 in RH type I (p < 0.0001) and Pru type II (p < 0.05) strains resulted in varying degrees of attenuated virulence. In addition, disruption of SR2 in type II Pru strain significantly reduced brain cyst burden by ~80% (p < 0.0001). Collectively, these results suggest that splicing factor SR2 is important for the pathogenicity of T. gondii, providing a new target for the control and treatment of toxoplasmosis
    • …
    corecore