420 research outputs found

    Materials Characterization Using Acoustic Nonlinearity Parameters and Harmonic Generation: Effects of Crystalline and Amorphous Structures

    Get PDF
    The importance of nonlinearity in the description of material behavior is gaining widespread attention. Nonlinearity plays a major, if not dominating, role in a number of material properties. For example, properties that are important in engineering design such as thermal expansion or the pressure dependence of optical refraction are inherently nonlinear [1]. New assembley techniques such as the use of ultrasonic gauges to determine the loading of critical fasteners depend upon nonlinear properties of the fasteners [2]. Areas of considerable fundamental interest in nonlinearity include lattice dynamics [3], radiation stress in solids [4,5], and nonlinear optics [6

    External quality assessment of the molecular diagnostics and genotyping of meticillin-resistant Staphylococcus aureus

    Get PDF
    Two multicentre external quality assessments (EQA) for the molecular detection and genotyping of meticillin-resistant Staphylococcus aureus (MRSA) were arranged. Firstly, 11 samples containing various amounts of inactivated MRSA strains, meticillin-susceptible S. aureus (MSSA), meticillin-resistant coagulase-negative staphylococci (MRCoNS) or Escherichia coli were distributed to 82 laboratories. Samples containing 102 or 103 MRSA cells were correctly scored in only 16 and 46% of the datasets returned, respectively. Two of the used MSSA strains contained an SCCmec cassette lacking the mecA gene. There was a marked difference in the percentage of correct results for these two MSSA strains (37 and 39%) compared to the MSSA strain lacking the SCCmec cassette (88%). Secondly, a panel for MRSA genotyping, consisting of ten samples (two identical, three genetically related and five unique strains) was distributed to 19 laboratories. Seventy-three percent of the datasets recorded all samples correctly. Most pulsed-field gel electrophoresis (PFGE) protocols proved to be suboptimal, resulting in inferior resolution in the higher or lower fragment regions. The performance of molecular diagnostics for MRSA shows no significant changes since our first EQA in 2006. The first molecular typing results are encouraging. Both assessments indicate that programme expansion is required and that major performance discrepancies continue to exist

    Anti-müllerian hormone is not associated with cardiometabolic risk factors in adolescent females

    Get PDF
    <p>Objectives: Epidemiological evidence for associations of Anti-Müllerian hormone (AMH) with cardiometabolic risk factors is lacking. Existing evidence comes from small studies in select adult populations, and findings are conflicting. We aimed to assess whether AMH is associated with cardiometabolic risk factors in a general population of adolescent females.</p> <p>Methods: AMH, fasting insulin, glucose, HDLc, LDLc, triglycerides and C-reactive protein (CRP) were measured at a mean age 15.5 years in 1,308 female participants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Multivariable linear regression was used to examine associations of AMH with these cardiometabolic outcomes.</p> <p>Results: AMH values ranged from 0.16–35.84 ng/ml and median AMH was 3.57 ng/ml (IQR: 2.41, 5.49). For females classified as post-pubertal (n = 848) at the time of assessment median (IQR) AMH was 3.81 ng/ml (2.55, 5.82) compared with 3.25 ng/ml (2.23, 5.05) in those classed as early pubertal (n = 460, P≤0.001). After adjusting for birth weight, gestational age, pubertal stage, age, ethnicity, socioeconomic position, adiposity and use of hormonal contraceptives, there were no associations with any of the cardiometabolic outcomes. For example fasting insulin changed by 0% per doubling of AMH (95%CI: −3%,+2%) p = 0.70, with identical results if HOMA-IR was used. Results were similar after additional adjustment for smoking, physical activity and age at menarche, after exclusion of 3% of females with the highest AMH values, after excluding those that had not started menarche and after excluding those using hormonal contraceptives.</p> <p>Conclusion: Our results suggest that in healthy adolescent females, AMH is not associated with cardiometabolic risk factors.</p&gt

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure

    Genome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham Heart Study data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cholesterol concentrations in blood are related to cardiovascular diseases. Recent genome-wide association studies (GWAS) of cholesterol levels identified a number of single-locus effects on total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) levels. Here, we report single-locus and epistasis SNP effects on TC and HDL-C using the Framingham Heart Study (FHS) data.</p> <p>Results</p> <p>Single-locus effects and pairwise epistasis effects of 432,096 SNP markers were tested for their significance on log-transformed TC and HDL-C levels. Twenty nine additive SNP effects reached single-locus genome-wide significance (p < 7.2 × 10<sup>-8</sup>) and no dominance effect reached genome-wide significance. Two new gene regions were detected, the <it>RAB3GAP1-R3HDM1-LCT-MCM6 </it>region of chr02 for TC identified by six new SNPs, and the <it>OSBPL8-ZDHHC17 </it>region (chr12) for HDL-C identified by one new SNP. The remaining 22 single-locus SNP effects confirmed previously reported genes or gene regions. For TC, three SNPs identified two gene regions that were tightly linked with previously reported genes associated with TC, including rs599839 that was 10 bases downstream <it>PSRC1 </it>and 3.498 kb downstream <it>CELSR2</it>, rs4970834 in <it>CELSR2</it>, and rs4245791 in <it>ABCG8 </it>that slightly overlapped with <it>ABCG5</it>. For HDL-C, <it>LPL </it>was confirmed by 12 SNPs 8-45 kb downstream, <it>CETP </it>by two SNPs 0.5-11 kb upstream, and the <it>LIPG-ACAA2 </it>region by five SNPs inside this region. Two epistasis effects on TC and thirteen epistasis effects on HDL-C reached the significance of "suggestive linkage". The most significant epistasis effect (p = 5.72 × 10<sup>-13</sup>) was close to reaching "significant linkage" and was a dominance × dominance effect of HDL-C between <it>LMBRD1 </it>(chr06) and the <it>LRIG3 </it>region (chr12), and this pair of gene regions had six other D × D effects with "suggestive linkage".</p> <p>Conclusions</p> <p>Genome-wide association analysis of the FHS data detected two new gene regions with genome-wide significance, detected epistatic SNP effects on TC and HDL-C with the significance of suggestive linkage in seven pairs of gene regions, and confirmed some previously reported gene regions associated with TC and HDL-C.</p

    Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of chronic aerobic exercise upon lipid profile has been previously demonstrated, but few studies showed this effect under resistance exercise conditions.</p> <p>Objective</p> <p>The aim of this study was to examine the effects of different resistance exercise loads on blood lipids.</p> <p>Methods</p> <p>Thirty healthy, untrained male volunteers were allocated randomly into four groups based at different percentages of one repetition maximum (1 RM); 50%-1 RM, 75%-1 RM, 90%-1 RM, and 110%-1 RM. The total volume (sets × reps × load) of the exercise was equalized. The lipid profile (Triglycerides [TG], HDL-cholesterol [HDL-c], LDL-cholesterol, and Total cholesterol) was determined at rest and after 1, 24, 48 and 72 h of resistance exercise.</p> <p>Results</p> <p>The 75%-1 RM group demonstrated greater TG reduction when compared to other groups (p < 0.05). Additionally, the 110%-1 RM group presented an increased TG concentration when compared to 50% and 75% groups (p = 0.01, p = 0.01, respectively). HDL-c concentration was significantly greater after resistance exercise in 50%-1 RM and 75%-1 RM when compared to 110%-1 RM group (p = 0.004 and p = 0.03, respectively). Accordingly, the 50%-1 RM group had greater HDL-c concentration than 110%-1 RM group after 48 h (p = 0.05) and 72 h (p = 0.004), respectively. Finally, The 50% group has showed lesser LDL-c concentration than 110% group after 24 h (p = 0.007). No significant difference was found in Total Cholesterol concentrations.</p> <p>Conclusion</p> <p>These results indicate that the acute resistance exercise may induce changes in lipid profile in a specific-intensity manner. Overall, low and moderate exercise intensities appear to be promoting more benefits on lipid profile than high intensity. Long term studies should confirm these findings.</p

    Environmental noise reduces predation rate in an aquatic invertebrate

    Get PDF
    Noise is one of a wide range of disturbances associated with human activities that have been shown to have detrimental impacts on a wide range of species, from montane regions to the deep marine environment. Noise may also have community-level impacts via predator–prey interactions, thus jeopardising the stability of trophic networks. However, the impact of noise on freshwater ecosystems is largely unknown. Even more so is the case of insects, despite their crucial role in trophic networks. Here, we study the impact of underwater noise on the predatory functional response of damselfly larvae. We compared the feeding rates of larvae under anthropogenic noise, natural noise, and silent conditions. Our results suggest that underwater noise (pooling the effects of anthropogenic noise and natural noise) decreases the feeding rate of damselflies significantly compared to relatively silent conditions. In particular, natural noise increased the handling time significantly compared to the silent treatment, thus reducing the feeding rate. Unexpectedly, feeding rates under anthropogenic noise were not reduced significantly compared to silent conditions. This study suggests that noise per se may not necessarily have negative impacts on trophic interactions. Instead, the impact of noise on feeding rates may be explained by the presence of nonlinearities in acoustic signals, which may be more abundant in natural compared to anthropogenic noise. We conclude by highlighting the importance of studying a diversity of types of acoustic pollution, and encourage further work regarding trophic interactions with insects using a functional response approach

    Declining Orangutan Encounter Rates from Wallace to the Present Suggest the Species Was Once More Abundant

    Get PDF
    BACKGROUND: Bornean orangutans (Pongo pygmaeus) currently occur at low densities and seeing a wild one is a rare event. Compared to present low encounter rates of orangutans, it is striking how many orangutan each day historic collectors like Alfred Russel Wallace were able to shoot continuously over weeks or even months. Does that indicate that some 150 years ago encounter rates with orangutans, or their densities, were higher than now? METHODOLOGY/PRINCIPAL FINDINGS: We test this hypothesis by quantifying encounter rates obtained from hunting accounts, museum collections, and recent field studies, and analysing whether there is a declining trend over time. Logistic regression analyses of our data support such a decline on Borneo between the mid-19th century and the present. Even when controlled for variation in the size of survey and hunting teams and the durations of expeditions, mean daily encounter rates appear to have declined about 6-fold in areas with little or no forest disturbance. CONCLUSIONS/SIGNIFICANCE: This finding has potential consequences for our understanding of orangutans, because it suggests that Bornean orangutans once occurred at higher densities. We explore potential explanations-habitat loss and degradation, hunting, and disease-and conclude that hunting fits the observed patterns best. This suggests that hunting has been underestimated as a key causal factor of orangutan density and distribution, and that species population declines have been more severe than previously estimated based on habitat loss only. Our findings may require us to rethink the biology of orangutans, with much of our ecological understanding possibly being based on field studies of animals living at lower densities than they did historically. Our approach of quantifying species encounter rates from historic data demonstrates that this method can yield valuable information about the ecology and population density of species in the past, providing new insight into species' conservation needs

    Hedgehog-mediated regulation of PPARγ controls metabolic patterns in neural precursors and shh-driven medulloblastoma

    Get PDF
    Sonic hedgehog (Shh) signaling is critical during development and its aberration is common across the spectrum of human malignancies. In the cerebellum, excessive activity of the Shh signaling pathway is associated with the devastating pediatric brain tumor medulloblastoma. We previously demonstrated that exaggerated de novo lipid synthesis is a hallmark of Shh-driven medulloblastoma and that hedgehog signaling inactivates the Rb/E2F tumor suppressor complex to promote lipogenesis. Indeed, such Shh-mediated metabolic reprogramming fuels tumor progression, in an E2F1- and FASN-dependent manner. Here, we show that the nutrient sensor PPARγ is a key component of the Shh metabolic network, particularly its regulation of glycolysis. Our data show that in primary cerebellar granule neural precursors (CGNPs), proposed medulloblastoma cells-of-origin, Shh stimulation elicits a marked induction of PPARγ alongside major glycolytic markers. This is also documented in the actively proliferating Shh-responsive CGNPs in the developing cerebellum, and PPARγ expression is strikingly elevated in Shh-driven medulloblastoma in vivo. Importantly, pharmacological blockade of PPARγ and/or Rb inactivation inhibits CGNP proliferation, drives medulloblastoma cell death and extends survival of medulloblastoma-bearing animals in vivo. This coupling of mitogenic Shh signaling to a major nutrient sensor and metabolic transcriptional regulator define a novel mechanism through which Shh signaling engages the nutrient sensing machinery in brain cancer, controls the cell cycle, and regulates the glycolytic index. This also reveals a dominant role of Shh in the etiology of glucose metabolism in medulloblastoma and underscores the function of the Shh → E2F1 → PPARγ axis in altering substrate utilization patterns in brain cancers in favor of tumor growth. These findings emphasize the value of PPARγ downstream of Shh as a global therapeutic target in hedgehog-dependent and/or Rb-inactivated tumors
    corecore