95 research outputs found

    VCAM-1-targeted MRI Improves Detection of the Tumor-brain Interface

    Get PDF
    PurposeDespite optimal local therapy, tumor cell invasion into normal brain parenchyma frequently results in recurrence in patients with solid tumors. The aim of this study was to determine whether microvascular inflammation can be targeted to better delineate the tumor-brain interface through vascular cell adhesion molecule-1 (VCAM-1)-targeted MRI.Experimental designIntracerebral xenograft rat models of MDA231Br-GFP (breast cancer) brain metastasis and U87MG (glioblastoma) were used to histologically examine the tumor-brain interface and to test the efficacy of VCAM-1-targeted MRI in detecting this region. Human biopsy samples of the brain metastasis and glioblastoma margins were examined for endothelial VCAM-1 expression.ResultsThe interface between tumor and surrounding normal brain tissue exhibited elevated endothelial VCAM-1 expression and increased microvessel density. Tumor proliferation and stemness markers were also significantly upregulated at the tumor rim in the brain metastasis model. T2*-weighted MRI, following intravenous administration of VCAM-MPIO, highlighted the tumor-brain interface of both tumor models more extensively than gadolinium-DTPA-enhanced T1-weighted MRI. Sites of VCAM-MPIO binding, evident as hypointense signals on MR images, correlated spatially with endothelial VCAM-1 upregulation and bound VCAM-MPIO beads detected histologically. These findings were further validated in an orthotopic medulloblastoma model. Finally, the tumor-brain interface in human brain metastasis and glioblastoma samples was similarly characterized by microvascular inflammation, extending beyond the region detectable using conventional MRI.ConclusionsThis work illustrates the potential of VCAM-1-targeted MRI for improved delineation of the tumor-brain interface in both primary and secondary brain tumors

    Long-Term Secondary Care Costs of Endometrial Cancer: A Prospective Cohort Study Nested within the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS).

    Get PDF
    BACKGROUND: There is limited evidence on the costs of Endometrial Cancer (EC) by stage of disease. We estimated the long-term secondary care costs of EC according to stage at diagnosis in an English population-based cohort. METHODS: Women participating in UKCTOCS and diagnosed with EC following enrolment (2001-2005) and prior to 31st Dec 2009 were identified to have EC through multiple sources. Survival was calculated through data linkage to death registry. Costs estimates were derived from hospital records accessed from Hospital Episode Statistics (HES) with additional patient level covariates derived from case notes and patient questionnaires. Missing and censored data was imputed using Multiple Imputation. Regression analysis of cost and survival was undertaken. RESULTS: 491 of 641 women with EC were included. Five year total costs were strongly dependent on stage, ranging from ÂŁ9,475 (diagnosis at stage IA/IB) to ÂŁ26,080 (diagnosis at stage III). Stage, grade and BMI were the strongest predictors of costs. The majority of costs for stage I/II EC were incurred in the first six months after diagnosis while for stage III / IV considerable costs accrued after the first six months. CONCLUSIONS: In addition to survival advantages, there are significant cost savings if patients with EC are detected earlier.The analysis underpinning this study was supported with a grant from Cancer Research UK (CRUK Grant No: A16008) awarded to RL (http://www.cancerresearchuk. org/funding-for-researchers). The trial (UKCTOCS) for which the patients in this study form a subgroup was funded by the Medical Research Council, Cancer Research UK, the Department of Health and the Eve Appeal

    Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice

    Get PDF
    AbstractDevelopmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319

    Search for the Z1(4050)+Z_1(4050)^+ and Z2(4250)+Z_2(4250)^+ states in Bˉ0→χc1K−π+\bar B^0 \to \chi_{c1} K^- \pi^+ and B+→χc1KS0π+B^+ \to \chi_{c1} K^0_S \pi^+

    Get PDF
    We search for the Z1(4050)+Z_1(4050)^+ and Z2(4250)+Z_2(4250)^+ states, reported by the Belle Collaboration, decaying to χc1π+\chi_{c1} \pi^+ in the decays Bˉ0→χc1K−π+\bar B^0 \to \chi_{c1} K^- \pi^+ and B+→χc1KS0π+B^+ \to \chi_{c1} K^0_S \pi^+ where \chi_{c1} \to \jpsi \gamma. The data were collected with the BaBar detector at the SLAC PEP-II asymmetric-energy e+e−e^+e^- collider operating at center-of-mass energy 10.58 GeV, and correspond to an integrated luminosity of 429 fb−1^{-1}. In this analysis, we model the background-subtracted, efficiency-corrected χc1π\chi_{c1}\pi mass distribution using the KπK \pi mass distribution and the corresponding normalized KπK \pi Legendre polynomial moments, and then test the need for the inclusion of resonant structures in the description of the χc1π\chi_{c1}\pi mass distribution. No evidence is found for the Z1(4050)+Z_1(4050)^+ and Z2(4250)+Z_2(4250)^+ resonances, and 90% confidence level upper limits on the branching fractions are reported for the corresponding BB-meson decay modes.Comment: 15 pages, 12 postscript figures, to be published in Phys. Rev.

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2‱−, generate Al superoxides [Al(O2‱)](H2O5)]+ 2. Semireduced AlO2‱ radicals deplete mitochondrial Fe and promote generation of H2O2, O2 ‱ − and OH‱. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism

    Get PDF
    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond

    Genetic foundations of human intelligence

    Get PDF

    Unusual presentation of a paraspinal mass with involvement of a lumbar facet joint and the epidural space

    No full text
    link_to_subscribed_fulltex
    • 

    corecore