101 research outputs found

    From Rotating Atomic Rings to Quantum Hall States

    Get PDF
    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic strongly correlated quantum Hall regime. The routes followed so far essentially rely on thermodynamics, i.e. imposing the proper Hamiltonian and cooling the system towards its ground state. In rapidly rotating 2D harmonic traps the role of the transverse magnetic field is played by the angular velocity. For particle numbers significantly larger than unity, the required angular momentum is very large and it can be obtained only for spinning frequencies extremely near to the deconfinement limit; consequently, the required control on experimental parameters turns out to be far too stringent. Here we propose to follow instead a dynamic path starting from the gas confined in a rotating ring. The large moment of inertia of the fluid facilitates the access to states with a large angular momentum, corresponding to a giant vortex. The initial ring-shaped trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum Hall regime. We provide clear numerical evidence that for a relatively broad range of initial angular frequencies, the giant vortex state is adiabatically connected to the bosonic ν=1/2\nu=1/2 Laughlin state, and we discuss the scaling to many particles.Comment: 9 pages, 5 figure

    Responses of Auditory Nerve and Anteroventral Cochlear Nucleus Fibers to Broadband and Narrowband Noise: Implications for the Sensitivity to Interaural Delays

    Get PDF
    The quality of temporal coding of sound waveforms in the monaural afferents that converge on binaural neurons in the brainstem limits the sensitivity to temporal differences at the two ears. The anteroventral cochlear nucleus (AVCN) houses the cells that project to the binaural nuclei, which are known to have enhanced temporal coding of low-frequency sounds relative to auditory nerve (AN) fibers. We applied a coincidence analysis within the framework of detection theory to investigate the extent to which AVCN processing affects interaural time delay (ITD) sensitivity. Using monaural spike trains to a 1-s broadband or narrowband noise token, we emulated the binaural task of ITD discrimination and calculated just noticeable differences (jnds). The ITD jnds derived from AVCN neurons were lower than those derived from AN fibers, showing that the enhanced temporal coding in the AVCN improves binaural sensitivity to ITDs. AVCN processing also increased the dynamic range of ITD sensitivity and changed the shape of the frequency dependence of ITD sensitivity. Bandwidth dependence of ITD jnds from AN as well as AVCN fibers agreed with psychophysical data. These findings demonstrate that monaural preprocessing in the AVCN improves the temporal code in a way that is beneficial for binaural processing and may be crucial in achieving the exquisite sensitivity to ITDs observed in binaural pathways

    Olfactory perireceptor and receptor events in moths: a kinetic model revised

    Get PDF
    Modelling reveals that within about 3 ms after entering the sensillum lymph, 17% of total pheromone is enzymatically degraded while 83% is bound to the pheromone-binding protein (PBP) and thereby largely protected from enzymatic degradation. The latter proceeds within minutes, 20,000-fold more slowly than with the free pheromone. In vivo the complex pheromone–PBP interacts with the receptor molecule. At weak stimulation the half-life of the active complex is 0.8 s due to the postulated pheromone deactivation. Most likely this process is enzymatically catalysed; it changes the PBP into a scavenger form, possibly by interference with the C-terminus. The indirectly determined PBP concentration (3.8 mM) is close to direct measurements. The calculated density of receptor molecules within the plasma membrane of the receptor neuron reaches up to 6,000 units per μm2. This is compared with the estimated densities of the sensory-neuron membrane protein and of ion channels. The EC50 of the model pheromone–PBP complex interacting with the receptor molecules is 6.8 μM, as compared with the EC50 = 1.5 μM of bombykol recently determined using heterologous expression. A possible mechanism widening the range of stimulus intensities covered by the dose–response curve of the receptor-potential is proposed

    Expression in Antennae and Reproductive Organs Suggests a Dual Role of an Odorant-Binding Protein in Two Sibling Helicoverpa Species

    Get PDF
    Odorant-binding proteins (OBPs) mediate both perception and release of semiochemicals in insects. These proteins are the ideal targets for understanding the olfactory code of insects as well as for interfering with their communication system in order to control pest species. The two sibling Lepidopteran species Helicoverpa armigera and H. assulta are two major agricultural pests. As part of our aim to characterize the OBP repertoire of these two species, here we focus our attention on a member of this family, OBP10, particularly interesting for its expression pattern. The protein is specifically expressed in the antennae of both sexes, being absent from other sensory organs. However, it is highly abundant in seminal fluid, is transferred to females during mating and is eventually found on the surface of fertilised eggs. Among the several different volatile compounds present in reproductive organs, OBP10 binds 1-dodecene, a compound reported as an insect repellent. These results have been verified in both H. armigera and H. assulta with no apparent differences between the two species. The recombinant OBP10 binds, besides 1-dodecene, some linear alcohols and several aromatic compounds. The structural similarity of OBP10 with OBP1 of the mosquito Culex quinquefasciatus, a protein reported to bind an oviposition pheromone, and its affinity with 1-dodecene suggest that OBP10 could be a carrier for oviposition deterrents, favouring spreading of the eggs in these species where cannibalism is active among larvae

    Characterization of an Enantioselective Odorant Receptor in the Yellow Fever Mosquito Aedes aegypti

    Get PDF
    Enantiomers differ only in the left or right handedness (chirality) of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8) acts as a chiral selective receptor for the (R)-(—)-enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs)

    Distinct Expression Profiles and Different Functions of Odorant Binding Proteins in Nilaparvata lugens Stål

    Get PDF
    Background: Odorant binding proteins (OBPs) play important roles in insect olfaction. The brown planthopper (BPH), Nilaparvata lugens Sta˚l (Delphacidae, Auchenorrhyncha, Hemiptera) is one of the most important rice pests. Its monophagy (only feeding on rice), wing form (long and short wing) variation, and annual long distance migration (seeking for rice plants of high nutrition) imply that the olfaction would play a central role in BPH behavior. However, the olfaction related proteins have not been characterized in this insect. Methodology/Principal Findings: Full length cDNA of three OBPs were obtained and distinct expression profiles were revealed regarding to tissue, developmental stage, wing form and gender for the first time for the species. The results provide important clues in functional differentiation of these genes. Binding assays with 41 compounds demonstrated that NlugOBP3 had markedly higher binding ability and wider binding spectrum than the other two OBPs. Terpenes and Ketones displayed higher binding while Alkanes showed no binding to the three OBPs. Focused on NlugOBP3, RNA interference experiments showed that NlugOBP3 not only involved in nymph olfaction on rice seedlings, but also had non-olfactory functions, as it was closely related to nymph survival. Conclusions: NlugOBP3 plays important roles in both olfaction and survival of BPH. It may serve as a potential target fo

    Linguistic and maternal genetic diversity are not correlated in Native Mexicans

    Get PDF
    Mesoamerica, defined as the broad linguistic and cultural area from middle southern Mexico to Costa Rica, might have played a pivotal role during the colonization of the American continent. The Mesoamerican isthmus has constituted an important geographic barrier that has severely restricted gene flow between North and South America in pre-historical times. Although the Native American component has been already described in admixed Mexican populations, few studies have been carried out in native Mexican populations. In this study, we present mitochondrial DNA (mtDNA) sequence data for the first hypervariable region (HVR-I) in 477 unrelated individuals belonging to 11 different native populations from Mexico. Almost all of the Native Mexican mtDNAs could be classified into the four pan-Amerindian haplogroups (A2, B2, C1, and D1); only two of them could be allocated to the rare Native American lineage D4h3. Their haplogroup phylogenies are clearly star-like, as expected from relatively young populations that have experienced diverse episodes of genetic drift (e.g., extensive isolation, genetic drift, and founder effects) and posterior population expansions. In agreement with this observation, Native Mexican populations show a high degree of heterogeneity in their patterns of haplogroup frequencies. Haplogroup X2a was absent in our samples, supporting previous observations where this clade was only detected in the American northernmost areas. The search for identical sequences in the American continent shows that, although Native Mexican populations seem to show a closer relationship to North American populations, they cannot be related to a single geographical region within the continent. Finally, we did not find significant population structure in the maternal lineages when considering the four main and distinct linguistic groups represented in our Mexican samples (Oto-Manguean, Uto-Aztecan, Tarascan, and Mayan), suggesting that genetic divergence predates linguistic diversification in Mexico

    Functional Analysis of General Odorant Binding Protein 2 from the Meadow Moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae)

    Get PDF
    Odorant binding proteins play a crucial role in transporting semiochemicals across the sensillum lymph to olfactory receptors within the insect antennal sensilla. In this study, the general odorant binding protein 2 gene was cloned from the antennae of Loxostege sticticalis, using reverse transcription PCR and rapid amplification of cDNA ends. Recombinant LstiGOBP2 was expressed in Escherichia coli and purified by Ni ion affinity chromatography. Real-time PCR assays indicated that LstiGOBP2 mRNA is expressed mainly in adult antennae, with expression levels differing with developmental age. Ligand-binding experiments using N-phenyl-naphthylamine (1-NPN) as a fluorescent probe demonstrated that the LstiGOBP2 protein has binding affinity to a broad range of odorants. Most importantly, trans-11-tetradecen-1-yl acetate, the pheromone component of Loxostege sticticalis, and trans-2-hexenal and cis-3-hexen-1-ol, the most abundant plant volatiles in essential oils extracted from host plants, had high binding affinities to LstiGOBP2 and elicited strong electrophysiological responses from the antennae of adults
    corecore