69 research outputs found

    Functional phosphoproteomic analysis reveals cold-shock domain protein A to be a Bcr-Abl effector-regulating proliferation and transformation in chronic myeloid leukemia

    Get PDF
    One proposed strategy to suppress the proliferation of imatinib-resistant cells in chronic myeloid leukemia (CML) is to inhibit key proteins downstream of Bcr-Abl. The PI3K/Akt pathway is activated by Bcr-Abl and is specifically required for the growth of CML cells. To identify targets of this pathway, we undertook a proteomic screen and identified several proteins that differentially bind 14-3-3, dependent on Bcr-Abl kinase activity. An siRNA screen of candidates selected by bioinformatics analysis reveals cold-shock domain protein A (CSDA), shown previously to regulate cell cycle progression in epithelial cells, to be a positive regulator of proliferation in a CML cell line. We show that Akt can phosphorylate the serine 134 residue of CSDA but, downstream of Bcr-Abl activity, this modification is mediated through the activation of MEK/p90 ribosomal S6 kinase (RSK) signaling. Inhibition of RSK, similarly to treatment with imatinib, blocked proliferation specifically in Bcr-Abl-positive leukemia cell lines, as well as cells from CML patients. Furthermore, these primary CML cells showed an increase in CSDA phosphorylation. Expression of a CSDA phospho-deficient mutant resulted in the decrease of Bcr-Abl-dependent transformation in Rat1 cells. Our results support a model whereby phosphorylation of CSDA downstream of Bcr-Abl enhances proliferation in CML cells to drive leukemogenesis

    Spinal Cord Injury Causes Sustained Disruption of the Blood-Testis Barrier in the Rat

    Get PDF
    There is a high incidence of infertility in males following traumatic spinal cord injury (SCI). Quality of semen is frequently poor in these patients, but the pathophysiological mechanism(s) causing this are not known. Blood-testis barrier (BTB) integrity following SCI has not previously been examined. The objective of this study was to characterize the effects of spinal contusion injury on the BTB in the rat. 63 adult, male Sprague Dawley rats received SCI (n = 28), laminectomy only (n = 7) or served as uninjured, age-matched controls (n = 28). Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), BTB permeability to the vascular contrast agent gadopentate dimeglumine (Gd) was assessed at either 72 hours-, or 10 months post-SCI. DCE-MRI data revealed that BTB permeability to Gd was greater than controls at both 72 h and 10 mo post-SCI. Histological evaluation of testis tissue showed increased BTB permeability to immunoglobulin G at both 72 hours- and 10 months post-SCI, compared to age-matched sham-operated and uninjured controls. Tight junctional integrity within the seminiferous epithelium was assessed; at 72 hours post-SCI, decreased expression of the tight junction protein occludin was observed. Presence of inflammation in the testes was also examined. High expression of the proinflammatory cytokine interleukin-1 beta was detected in testis tissue. CD68+ immune cell infiltrate and mast cells were also detected within the seminiferous epithelium of both acute and chronic SCI groups but not in controls. In addition, extensive germ cell apoptosis was observed at 72 h post-SCI. Based on these results, we conclude that SCI is followed by compromised BTB integrity by as early as 72 hours post-injury in rats and is accompanied by a substantial immune response within the testis. Furthermore, our results indicate that the BTB remains compromised and testis immune cell infiltration persists for months after the initial injury

    First-line high-dose sequential chemotherapy with rG-CSF and repeated blood stem cell transplantation in untreated inflammatory breast cancer: toxicity and response (PEGASE 02 trial)

    Get PDF
    Despite the generalization of induction chemotherapy and a better outcome for chemosensitive diseases, the prognosis of inflammatory breast cancer (IBC) is still poor. In this work, we evaluate response and toxicity of high-dose sequential chemotherapy with repeated blood stem cell (BSC) transplantation administered as initial treatment in 100 women with non-metastatic IBC. Ninety-five patients (five patients were evaluated as non-eligible) of median age 46 years (range 26–56) received four cycles of chemotherapy associating: cyclophosphamide (C) 6 g m−2 – doxorubicin (D) 75 mg m−2 cycle 1, C: 3 g m−2 – D: 75 mg m−2 cycle 2, C: 3 g m−2 – D: 75 mg m−2 – 5 FU 2500 mg m−2 cycle 3 and 4. BSC were collected after cycle 1 or 2 and reinfused after cycle 3 and 4. rG-CSF was administered after the four cycles. Mastectomy and radiotherapy were planned after chemotherapy completion. Pathological response was considered as the first end point of this trial. A total of 366 cycles of chemotherapy were administered. Eighty-seven patients completed the four cycles and relative dose intensity was respectively 0.97 (range 0.4–1.04) and 0.96 (range 0.25–1.05) for C and D. Main toxicity was haematological with febrile neutropenia ranging from 26% to 51% of cycles; one death occurred during aplasia. Clinical response rate was 90% ± 6%. Eighty-six patients underwent mastectomy in a median of 3.5 months (range 3–9) after the first cycle of chemotherapy; pathological complete response rate in breast was 32% ± 10%. All patients were eligible to receive additional radiotherapy. High-dose chemotherapy with repeated BSC transplantation is feasible with acceptable toxicity in IBC. Pathological response rate is encouraging but has to be confirmed by final outcome. © 1999 Cancer Research Campaig

    Aluminum toxicity in childhood

    Full text link
    Aluminum intoxication is an iatrogenic disease caused by the use of aluminum compounds for phosphate binding and by the contamination of parenteral fluids. Although organ aluminum deposition was noted as early as 1880 and toxicity was documented in the 1960s, the inability to accurately measure serum and tissue aluminum prevented delineation of its toxic effects until the 1970s. Aluminum toxicity has now been conclusively shown to cause encephalopathy, metabolic bone disease, and microcytic anemia.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47831/1/467_2004_Article_BF00869743.pd

    Perivascular macrophages in health and disease

    Get PDF
    Macrophages are a heterogeneous group of cells that are capable of carrying out distinct functions in different tissues, as well as in different locations within a given tissue. Some of these tissue macrophages lie on, or close to, the outer (abluminal) surface of blood vessels and perform several crucial activities at this interface between the tissue and the blood. In steady-state tissues, these perivascular macrophages maintain tight junctions between endothelial cells and limit vessel permeability, phagocytose potential pathogens before they enter tissues from the blood and restrict inappropriate inflammation. They also have a multifaceted role in diseases such as cancer, Alzheimer disease, multiple sclerosis and type 1 diabetes. Here, we examine the important functions of perivascular macrophages in various adult tissues and describe how these functions are perturbed in a broad array of pathological conditions

    A Low-Frequency Inactivating Akt2 Variant Enriched in the Finnish Population is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk

    Get PDF
    To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting insulin, a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in fasting plasma insulin (FI) levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-hour insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio=1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.Academy of Finland (129293, 128315, 129330, 131593, 139635, 139635, 121584, 126925, 124282, 129378, 258753); Action on Hearing Loss (G51); Ahokas Foundation; American Diabetes Association (#7-12-MN-02); Atlantic Canada Opportunities Agency; Augustinus foundation; Becket foundation; Benzon Foundation; Biomedical Research Council; British Heart Foundation (SP/04/002); Canada Foundation for Innovation; Commission of the European Communities, Directorate C-Public Health (2004310); Copenhagen County; Danish Centre for Evaluation and Health Technology Assessment; Danish Council for Independent Research; Danish Heart Foundation (07-10-R61-A1754-B838-22392F); Danish Medical Research Council; Danish Pharmaceutical Association; Emil Aaltonen Foundation; European Research Council Advanced Research Grant; European Union FP7 (EpiMigrant, 279143; FP7/2007-2013; 259749); Finland's Slottery Machine Association; Finnish Cultural Foundation; Finnish Diabetes Research Foundation; Finnish Foundation for Cardiovascular Research; Finnish Foundation of Cardiovascular Research; Finnish Medical Society; Finnish National Public Health Institute; Finska LĂ€karesĂ€llskapet; FolkhĂ€lsan Research Foundation; Foundation for Life and Health in Finland; German Center for Diabetes Research (DZD) ; German Federal Ministry of Education and Research; Health Care Centers in Vasa, NĂ€rpes and Korsholm; Health Insurance Foundation (2012B233) ; Helsinki University Central Hospital Research Foundation; Hospital districts of Pirkanmaa, Southern Ostrobothnia, North Ostrobothnia, Central Finland, and Northern Savo; Ib Henriksen foundation; Juho Vainio Foundation; Korea Centers for Disease Control and Prevention (4845–301); Korea National Institute of Health (2012-N73002-00); Li Ka Shing Foundation; Liv och HĂ€lsa; Lundbeck Foundation; Marie-Curie Fellowship (PIEF-GA-2012-329156); Medical Research Council (G0601261, G0900747-91070, G0601966, G0700931); Ministry of Education in Finland; Ministry of Social Affairs and Health in Finland; MRC-PHE Centre for Environment and Health;Municipal Heath Care Center and Hospital in Jakobstad; NĂ€rpes Health Care Foundation; National Institute for Health Research (RP-PG-0407-10371); National Institutes of Health (U01 DK085526, U01 DK085501, U01 DK085524, U01 DK085545, U01 DK085584, U01 DK088389, RC2-DK088389, DK085545, DK098032, HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN, R01MH107666 and K12CA139160268201300050C, U01 DK062370, R01 DK066358, U01DK085501, R01HL102830, R01DK073541, PO1AG027734, R01AG046949, 1R01AG042188, P30AG038072, R01 MH101820, R01MH090937, P30DK020595, R01 DK078616, NIDDK K24 DK080140, 1RC2DK088389, T32GM007753); National Medical Research Council; National Research Foundation of Korea (NRF-2012R1A2A1A03006155); Nordic Center of Excellence in Disease Genetics; Novo Nordisk; Ollqvist Foundation; OrionFarmos Research Foundation; Paavo Nurmi Foundation; PerklĂ©n Foundation; Samfundet FolkhĂ€lsan; Signe and Ane Gyllenberg Foundation; Sigrid Juselius Foundation; Social Insurance Institution of Finland; South East Norway Health Authority (2011060); Swedish Cultural Foundation in Finland; Swedish Heart-Lung Foundation; Swedish Research Council; Swedish Research Council (LinnĂ© and Strategic Research Grant); The American Federation for Aging Research; The Einstein Glenn Center; The European Commission (HEALTH-F4-2007-201413); The Finnish Diabetes Association; The FolkhĂ€lsan Research Foundation; The PĂ„hlssons Foundation; The provinces of Newfoundland and Labrador, Nova Scotia, and New Brunswick; The Sigrid Juselius Foundation; The SkĂ„ne Regional Health Authority; The Swedish Heart-Lung Foundation; Timber Merchant Vilhelm Bang’s Foundation; Turku University Foundation; Uppsala University; Wellcome Trust (064890, 083948, 085475, 086596, 090367, 090532, 092447, 095101/Z/10/Z, 200837/Z/16/Z, 095552, 098017, 098381, 098051, 084723, 072960/2/ 03/2, 086113/Z/08/Z, WT098017, WT064890, WT090532, WT098017, 098051, WT086596/Z/08/A and 086596/Z/08/Z). Detailed acknowledgment of funding sources is provided in the Additional Acknowledgements section of the Supplementary Materials
    • 

    corecore