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Abstract 

 

BACKGROUND: Pulsed-electromagnetic field (PEMF) devices are marketed and utilized, 

for the non-chemical management of biofouling, with little scientific validation of their 

effectiveness. We previously initiated proof-of-principle studies, to systematically investigate 

the effect of two such commercial devices on the culturability of bacteria under controlled static 

(i.e. non-flowing) conditions and anti-microbial effects were demonstrated under static 

conditions. However, such effects were small and an expanded investigation, using these 

devices and including the effect of flow, was deemed necessary.  

 

RESULTS: The effect of the electromagnetic fields generated by the same two commercial 

devices on the bacterial culturability of Escherichia coli and Pseudomonas fluorescens under 

flow conditions has been contrasted with previous static results. It has been found that the 

effectiveness of PEMF exposure depends on waveform, extent of flow, type of bacteria and 

PEMF exposure duration. 

 

CONCLUSION: Both stimulatory and inhibitory effects are observed that are uniquely 

dependent upon device type (i.e. a range of parameters including waveform), species of 

This article is protected by copyright. All rights reserved.

 
 

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which 
may lead to differences between this version and the Version of Record. Please cite this 
article as doi: 10.1002/jctb.5442 

  

b r o u g h t  t o  y o u  b y  C O R EV i e w  m e t a d a t a ,  c i t a t i o n  a n d  s i m i l a r  p a p e r s  a t  c o r e . a c . u k

p r o v i d e d  b y  V i c t o r i a  U n i v e r s i t y  E p r i n t s  R e p o s i t o r y

https://core.ac.uk/display/161984382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A
cc

ep
te

d 
A

rti
cl

e
microorganism, presence and degree of flow and PEMF exposure time. For both devices and 

both microorganisms, stimulatory effects are uniformly observed for one device under static 

conditions and inhibitory effects are uniformly observed for the other device at low flow and 

for the former at high flow.  

 

Keywords: biofouling; bacterial viability/culturability; pulsed electromagnetic field; reverse 

osmosis membrane 
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INTRODUCTION 

Water intensive installations such as cooling towers, refrigeration plants and RO membrane 

systems for desalination and water reuse1-4 are susceptible to bio-fouling via a range of 

environmental microorganisms5-7 including, Pseudomonas, Corynebacterium, Bacillus, 

Arthrobacter, Mycobacterium, Acinetobacter, Cytophaga, Flavobacterium, Moraxella, 

Micrococcus, Serratia, Lactobacillus, Sphingomonas and Legionella. The life cycles of such 

organisms can lead to the deposition of multiple layers of living, inactive and dead organisms, 

along with their associated extracellular polymeric substances, so-called biofilms, onto the 

functional surfaces of such equipment, compromising their performance.8 The use and 

development of measures to combat such biofouling is important and are usually based on 

chemical methods, that present associated health and environmental risks.5,9 To avoid the risks 

associated with chemical disinfection and cleaning; non-chemical or physical feed-water 

pretreatment - including magnetic, pulsed power, electrostatic, ultrasonic or hydrodynamic 

cavitation processes have been investigated. Such methods promise to reduce labour and 

maintenance costs, improve safety (due to low or no chemical handling) and to reduce toxic 

breakdown products.10-14 

 

In particular, water treatment utilizing so-called PEMF has evolved from bacterial 

decontamination methods using PEFs in relation to the sterilization of food.15-19 However, PEF 

and PEMF processes are fundamentally different from each other in that, in the PEF process, 

the field generating electrodes are in direct contact with the medium.20-23 For the PEMF 

treatment of water, there is no direct contact with the treated medium and the general method 

may be defined either as AC induction12, electromagnetic3 or pulsed-power.24   

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
Thus a typical commercially available PEMF device is composed of two main components; a 

signal (waveform) generator26 or driver enclosure,27 and a treatment module26 or reaction 

chamber27 where the water to be treated is passed through a plastic or stainless-steel conduit 

which is wrapped around by a conductive wire or cable that can be energized22  to generate the 

encompassing electromagnetic field.3 Notably, manufacturers of such equipment tend to make 

their claims as to the effectiveness of such products based on uncontrolled laboratory/field 

conditions and/or unauthenticated testimonials and there is a paucity of controlled scientific 

research to support such claims or to elucidate potential antimicrobial mechanisms.  

 

We have recently published a paper that thoroughly reviews use of PEMF devices as a 

pretreatment for scaling and for biofouling control in the water treatment industry27 and we 

have also initiated a systematic scientific study of the effect of two commercially available 

PEMF devices on bacterial culturability25. This research demonstrated that for E. coli and silver 

nanoparticle compromised E. coli, a small, but statistically significant, inhibition occurred 

under static (non-flow) conditions for both devices. In addition, under some circumstances, a 

small but significant stimulation of growth was observed. It was clear from the studies that the 

PEMF was influencing the culturability of this microorganism and that this was sensitive to 

both waveform and to exposure time. Although the effects observed in this previous work were 

small, the results represent an important proof of principle and pave the way for the extended 

studies reported here, where another microorganism, P. fluorescens, has been included in the 

study and flow conditions (low and high) have been introduced into the experiments as 

additional parameters.  

 

It is our contention that a persistent systematic approach to this problem with respect to the 

variation of parameters such as frequency, waveform, exposure time, temperature, flow rate 
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and the presence of ionic and other chemical species in solution, will reveal whether a set of 

optimal conditions can be established that will result in the high level of lethality that is 

desirable for a practical application of PEMF technology to biofouling - commensurate with 

current claims made by manufacturers of such equipment.  

 

MATERIALS AND METHODS 

Overall experimental design  

A schematic showing the overall experimental design is depicted in Fig. 1. For two different 

commercially available PEMF devices, designated D and G, the culturability (viability) of two 

microorganisms, namely E. coli and P. fluorescens, were compared under static, “low” flow 

(92 mL/min) and “high” flow (460 mL/min) conditions. 

  

>>>>>>>> Insert Figure 1 and Caption here >>>>>>>>> 

 

A static mode laboratory system was set up, as described in our previous work,25 that 

incorporated either of the two commercially available PEMF devices (designated D or G) for 

exposure experiments on E. coli or P. fluorescens colonies. The microorganisms were plated 

onto TSA (Oxoid, Hampshire, England) in triplicate, and incubated at 27 ± 2 °C for 48 hours 

until the colonies became visible.  

 

Flow mode test apparatus and materials 

A schematic of the flow mode apparatus is shown in Fig. 2. This set up was comprised of either 

of the two commercially available PEMF devices (D or G), PVC arms (tubes), a peristaltic 

pump (Masterflex, John Morris Scientific, Chatswood, NSW 2067) and a reservoir (a 2 L 

polypropylene container with screw cap lid, Cospak Pty Ltd, Victoria, AU). The PVC arms 
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were filled with deionized water along with the treatment chamber of the connected PEMF 

device and a smaller diameter plastic tube - to carry the microorganism suspension -was passed 

through the PVC arms and the treatment chamber.  As described previously25, the two 

commercial PEMF devices employed (D and G) shared common features; namely, a signal 

generator housing the power and control components and a treatment chamber which is 

connected to the signal generator via an “umbilical” cable.  It was noted that the two devices 

thermally stabilized at different temperatures, namely 40 °C and 27 °C for D and G, 

respectively, due to their having very different electronics and circuitry, as well as different 

power specifications and waveforms.25 The temperature of the flow system was taken to be the 

temperature of the reservoir. Strict temperature control of these experiments is essential and 

this has been was satisfactorily addressed in our experiments, as described herein.  

 

>>>>>>>>>>> Insert Figure 2 and Caption here >>>>>>>>>>> 

 

Bacterial cultures and materials 

The effects of a PEMF on two types of bacteria were investigated. These were non-pathogenic 

lab strains of E. coli (ATCC 25922)25 and P. fluorescens (ATCC 17386), that were chosen due 

to their prevalence in water systems and for their ready availability and ease of culturing26. 

Fresh colonies from pre-grown plates, obtained from the Victoria University culture collection 

(Melbourne, AU), were transferred into sterile TSB (Oxoid, Hampshire, England) under aseptic 

conditions and grown overnight at 35 + 2 °C for E. coli and 27 + 2 °C for P. fluorescens in a 

shaker/incubator at 120 rpm. The optical density, OD, of an overnight culture was determined 

at 600 nm using a spectrophotometer (Biochrom, Model Libra S11 Cambridge CB4 0FJ, 

England) with fresh TSB as the blank. Cultures giving ODs of more than 1 unit at 600 nm were 
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adjusted to OD 1 with PBS.  PBS was prepared by dissolving the PBS tablet in sterile water 

(Sigma-Aldrich, St Louis MO 63103, USA). The pH of the PBS solution was ~ 7.5. 

 

Exposure of bacteria to PEMF under flow mode 

In the flow mode system, the culture was pumped from the reservoir, passed through the device 

treatment chamber and then was released back into the reservoir.  Each PEMF system was 

stabilized for 4 hours prior to the experiment. Initially, with the field turned off, the pump was 

started and allowed to run with 990 mL of sterile PBS for five minutes to remove any trapped 

air. After the five minutes, 10 mL of OD 1 bacterial culture was introduced into the 2 L 

reservoir and, at time zero (t=0, i.e. with no field), samples were taken. The field was then 

turned back on and the reservoir was left stirring (magnetic stirring) under room temperature 

conditions. As a result the ‘treated’ liquid flows through a heated chamber, the temperature of 

the reservoir being slightly elevated (~ 27 °C) relative to the ambient temperature (20 - 25 °C). 

This was to minimize cell deposition and to ensure thorough mixing and representative 

samples.  

 

Control set up for the flow mode test  

In the flow mode system, the culture was pumped from the reservoir, passed through the device 

treatment chamber and then was released back into the reservoir. As a result the ‘treated’ liquid 

flows through a heated chamber, the temperature of the reservoir being slightly elevated (~ 27 

°C) relative to the ambient temperature (20 - 25 °C). Recirculation also created some turbulence 

in addition to the magnetic stirring/mixing. The reservoir was heated to elevate the temperature 

above room temperature and maintained at 27 °C. On separate days, a reservoir of 1L culture 

was prepared as above. This was re-circulated using the same pump at the same two speeds 

employed for the PEMF flow mode test. We emphasize that controlling the temperature up to 
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the required level was considered to be a vital control and was closely monitored, see Tables 1 

and 2 below. 

 

Special considerations 

The reservoirs were tightly closed and covered with aluminum foil to minimize any effects 

from the laboratory lights on the bacterial reservoirs, both the treated and the control were 

covered with aluminum foil. The ambient laboratory temperature was maintained from 20 - 25 

°C using an electronic temperature control panel. 

 

Sampling and plating 

Samples were directly obtained from the reservoir at the designated sampling times and serially 

diluted in PBS.  E.coli were plated in NA in triplicate and incubated at 35 ± 2 °C overnight and 

P. fluorescens were plated in TSA as described earlier. The number of CFUs was used to 

quantify the results.25,34 

 

RESULTS AND DISCUSSION 

Exposure of E. coli to PEMF under static, low and high flow conditions 

Exposure of E. coli to PEMF under static conditions has been reported in our previous study.25 

Fig. 3 shows the observed effects of PEMF exposure on E. coli culturability, for each PEMF 

device, under different flow conditions. Table 1 shows the monitored temperature variation 

between the three E. coli reservoirs over the duration of the experiment for low flow and high 

flow conditions for both devices. These slight temperature variations are considered acceptable 

in relation to the experiments depicted in Fig. 3. 

 

>>>>>>>>>> Insert Figure 3 and Caption here >>>>>>>>>>>> 
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>>>>>>>>>> Insert Table 1 and Heading here >>>>>>>>>>>> 

 

Exposure of P. fluorescens to PEMF under static, low and high flow conditions 

Fig. 4 shows the observed effects of static PEMF exposure on culturability of P. fluorescens 

for each device under static conditions for 3 hours and 7 hours. This experiment is analogous 

to the previously reported experiment conducted for the exposure of E.coli to PEMF under 

static conditions.25 

 

>>>>>>>>>> Insert Figure 4 and Caption here >>>>>>>>>>> 

 

Exposure of P. fluorescens to PEMF under low and high flow conditions 

Fig. 5 shows the observed effects of PEMF exposure on P. fluorescens culturability, for each 

PEMF device, under flow conditions. Table 2 shows the temperature variation between the 

three E.coli reservoirs over the duration of the experiment for low flow and high flow 

conditions for both devices. These slight temperature variations are considered acceptable in 

relation to the experiments depicted in Fig. 5. 

 

>>>>>>>>>>>> Insert Figure 5 and Caption here >>>>>>>>>>>>> 

 

>>>>>>>>>> Insert Table 2 and Heading here >>>>>>>>>>>> 

 

For both devices, both microorganisms, and for the three different conditions of flow, the 

comparative results across Figs. 3 to 5 are summarized and compared in Table 3 in terms of to 

what extent exposure to the PEMF is inhibitory or stimulatory. This is expressed as the 
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percentage change in the number of Colony Forming Units (CFUs). The data has been 

examined in this way in order to assess the trends on going from static conditions through low 

to high flow rates and to assess the effect of using different exposure times and different devices 

(with different waveforms). Observed effects and trends derived from Table 3 are summarized 

in Table 4. 

 

>>>>>>>>>> Insert Table 3 and Heading here >>>>>>>>>>>> 

 

>>>>>>>>>> Insert Table 4 and Heading here >>>>>>>>>>>> 

 

What is immediately apparent from the data summarized in Table 4 is that the two devices give 

very different outcomes although, overall, they both exhibit equal numbers of inhibitory and 

stimulatory effects, albeit under different conditions of microorganism type and flow. Both 

stimulatory (S) and inhibitory (I) effects are observed that are uniquely dependent upon device 

type (i.e. a range of instrument parameters including waveform), species of microorganism, 

presence and degree of flow and PEMF exposure time. Notably, for both devices and both 

microorganisms employed here, stimulatory effects are uniformly observed for Device G under 

static conditions and inhibitory effects are uniformly observed for Device D at low flow and 

for device G at high flow. As described in our previous study, the waveform characteristics of 

the two devices are very different.25 Such differences could be linked with different outcomes 

observed for the different devices. In this regard, cell poration and cell fusion have been shown 

to be affected to different extents by varying the physical characteristics of an applied electric 

field35. These workers have related the different waveforms to differences in cell membrane 

disruption. Studies such as these support our view that there are probably many influencing 
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factors that need to be accounted for in a systematic way, including waveform - an approach 

strongly suggested by our present research. 

 

Another observation from Table 4 is that, generally, static conditions favor stimulatory effects 

(S) whereas flow conditions favour inhibitory effects (I). In this regard, it is known that PEF 

treatment can cause higher inactivation levels in exponentially growing cells than in stationary-

phase cells38. In addition, PEF exposure of E. coli has been reported to achieve better microbial 

inactivation with a higher flow rate, attributed to better mixing - allowing uniform treatment. 

These results are broadly consistent with our observations.  

 

Magnetic fields39, pulsed electric fields40 and extremely low-frequency electromagnetic fields41 

have been shown to be effective in controlling P. fluorescens, but this species has also shown 

a positive adaptive response (I to S) to magnetic field treatments.41   A positive adaptive 

response has also been observed for E. coli38 after exposure to a 50 Hz EMF for 20–120 min. 

This was manifested as a subsequent increase in cell viability.  

 

Such reports are consistent with both the inhibitory and stimulatory effects exhibited here upon 

exposure to PEMF under different conditions. For example, a positive adaptive response for P. 

fluorescens may be observed in our results when the flow rate is increased from low to high 

during Device D PEMF exposure for 6-7 h, Table 4. In this case the inhibitory to stimulatory 

transition is from -38% to +118%, Table 3.  A similar positive adaptive response may be 

observed for E. coli when the flow rate is increased from low to high during Device D PEMF 

exposure, with this effect occurring for both exposure times. In this case the inhibitory to 

stimulatory transition (I to S) is from -36% to +4% (3-4h) and -42% to +64% (6-7 h), Table 3. 
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In terms of a negative adaptive response (S to I), Faraj and Muhamad37 have identified a 

stimulation period followed by a decrease of E. coli numbers upon exposure to a high magnetic 

field. They maintain that the increase in cell numbers might be a result of stimulation in cell 

division and that the decrease was perhaps due to a change in the permeability of the ionic 

channels that causes ion imbalance.  For E. coli PEMF exposure, we observe three examples 

of such a response (S to I); namely, for Device D upon going from static to low flow over a 

short exposure time (+9% to -36%) and for Device G upon going from low flow to high flow 

for both short (+57% to -26%) and long (+55% to -51%) exposure times. Similarly for P. 

fluorescens we also observe three examples of an S to I response; namely, for Device D upon 

going from static to low flow for both short (+571% to -17%) and long (+169% to -38%) 

exposure times and for Device G upon going from static to flow conditions for both short 

(+35% to -34%) and long (+8% to -50%) exposure times. 

 

Table 4 also demonstrates that the effects of Device D are more variable over time than for 

Device G for both microorganisms. Specifically, for Device G, with increasing exposure time, 

an inhibitory effect develops with increasing flow and this is more pronounced for P. 

fluorescens. For Device D, the tendency with increasing exposure time is towards stimulatory 

effects with increasing flow, although this is more pronounced for E. coli. 

 

CONCLUSION  

The outcomes of these experiments support the findings of other researchers40, 41 whereby 

positive38 or negative37, 43 adaptive responses of different microorganisms, upon exposure to 

magnetic or electromagnetic fields, are observed under various conditions. Via carefully 

controlled experiments, we have clearly demonstrated that such responses depend, in a 

sensitive way, on the interplay of numerous factors and parameters such as field generating 
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device specifications (e.g. waveform, frequency, power etc.), the specific microorganism 

species, flow rate and exposure time - and possibly other factors. Notably, this complex 

interdependency of parameters was also apparent in our recent work involving the effect of 

these same two devices on calcium carbonate precipitation, in relation to the prevention of 

scaling.42 In this latter work, a similarly highly controlled and systematic laboratory study 

demonstrated that Devices D and G had very different effects on calcium carbonate crystal 

formation and precipitation. To the best of our knowledge, our work represents the first time 

that such highly controlled, replicate, experiments have been conducted on commercially 

available devices. 

 

In order to properly define such effects and to subsequently explore and delineate the 

mechanisms involved, an ongoing program of highly controlled systematic experiments, such 

as those conducted here, is required. Given the number of interdependent parameters possible, 

this will constitute a substantial long-term scientific venture. Indeed, it is suggested that the 

magnitude and complexity of this task has been a contributing factor to the paucity of 

scientifically based evidence that is currently available to support or refute the claims of the 

manufacturers of commercially available magnetic, EMF and PEMF water treatment 

technologies.  
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Table 1: Temperature monitoring of the low flow (92 mL/min) and high flow (460 mL/min) 

E. coli reservoirs for devices D and G. The control tests were performed with no exposure to 

PEMF but with the same flow rates and heating. The estimated error in temperature 

measurement is ± 2 °C. 

 

Exposure 
time (h) 

E. coli reservoir temperature (°C) 
under low flow (92 mL/min) 

E. coli reservoir temperature (°C) 
under high flow (460 mL/min) 

Control D PEMF G PEMF Control D PEMF  G PEMF 
3-4 30 25 25 30 27 25 
6-7 26 26 25 30 27 25 
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Table 2: Temperature monitoring of the low flow (92 mL/min) and high flow (460 mL/min) 

P. fluorescens reservoirs for devices D and G. The control tests were performed with no 

exposure to PEMF but with the same flow rates and heating. The estimated error in temperature 

measurement is ± 2 °C. 

 

Exposure 
time (h) 

P. fluorescens reservoir temperature 
(°C) under  low flow (92 mL/min) 

P. fluorescens  reservoir temperature 
(°C) under high flow (460 mL/min) 

Control D PEMF G PEMF Control D PEMF  G PEMF 
4 28 29 26 27 27 26 
6 28 29 27 27 27 26 
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Table 3: Summary table for exposure of both E.coli and P. fluorescens to Devices D and G 

under static, low flow (92 mL/min) and high flow (460 mL/min) conditions (numbers represent 

% change in growth, i.e. [(value – control)/control] x 100%. Stimulatory (S) is positive; 

inhibitory (I) is negative. 

 
Treatment 
duration 

 
Microrganism 

No flow (static 
treatment) 

Low flow (92 mL/min) High flow (460 
mL/min) 

Device D Device G Device D Device G Device D Device G 

3-4 hours  
 

E. coli 
 
 

Stimulatory 
9%  

 
(Ref. 25) 

 

Stimulatory 
68% 

 
(Ref. 25) 

Inhibitory 
-36% 

 
Fig 3 (a) 

Stimulatory 
57% 

 
Fig 3 (a) 

Stimulatory  
4% 

 
Fig 3 (b) 

Inhibitory 
-26% 

 
Fig 3 (b) 

6-7 hours  
 

E. coli 
 

 

Inhibitory 
-55%  

 
(Ref. 25) 

Stimulatory
5% 

 
(Ref. 25) 

Inhibitory 
-42% 

 
Fig 3 (a) 

Stimulatory
55% 

 
Fig 3 (a) 

Stimulatory  
64% 

 
Fig 3 (b) 

Inhibitory 
-51% 

 
Fig 3 (b) 

3-4 hours 
  

P. fluorescens 
 
 

Highly 
Stimulatory  

571% 
 

Fig 4 (a) 

Stimulatory
35% 

 
 

Fig 4 (a) 

Inhibitory 
-17% 

 
  

Fig 5 (a) 

Inhibitory 
 -34% 

 
 

Fig 5 (a)  

Inhibitory 
-31% 

 
 

Fig 5 (b) 

Inhibitory 
-40% 

 
 

Fig 5 (b) 

6-7 hours 
  

P. fluorescens 
 

 

Highly 
Stimulatory  

169% 
 

Fig 4 (b) 

Stimulatory
8%  

 
 

Fig 5 (b) 

Inhibitory 
-38% 

 
 

Fig 5 (a) 

Inhibitory 
-50% 

 
 

Fig 5 (a) 

Stimulatory  
118% 

 
 

Fig 5 (b) 

Inhibitory 
 -17% 

 
 

Fig 5 (b) 
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Table 4: An overview of the stimulatory (S) or inhibitory (I) effects as a result of exposure to 

the PEMFs from two different commercial devices (D & G) as a function of the device itself, 

the flow conditions (static, low (92 mL/min) or high (460 mL/min)), the microorganism species 

and the exposure time.   

 
Device                   Flow conditions Organism Exposure (h))

Static Low flow High flow 
 

D 
S I S E.coli 3-4 
I I S 6-7 
S I I P. fluorescens 3-4 
S I S 6-7 

 
G 

S S I E.coli 3-4 
S S I 6-7 
S I I P. fluorescens 3-4 
S I I 6-7 
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Figure 1.  Schematic showing the overall experimental design. 
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Figure 2. The “flow mode” apparatus incorporating the PEMF device(s). 
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Figure 3. Enumeration of E .coli populations (expressed as CFUs/mL) for the control and for 

exposure to PEMF by devices D and G under (a) low flow rate (92 mL/min) (b) high flow rate 

(460 mL/min). Experiments for device D, G, and control (for all static, low flow and high flow) 

were freshly started and performed separately on different dates. The error bars are standard 

errors for three replicate platings. Bars at t=0 represent the ‘establishment stage’ after about 1h 

of growth where the bacteria are introduced into the experiments – note that for these three bars 

there is no PEMF applied.  
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Figure 4: Enumeration of P. fluorescens populations (expressed as CFUs/mL) following 

exposure for (a) 3 hours  (b) 7 hours  to PEMF for Device-D or Device-G and their respective 

non-PEMF temperature pre-equilibrated water-bath controls. Error bars are standard errors for 

three replicates. The 3 hour and 7 hour exposure experiments were conducted on 2 separate 

days due to the difficulties of sampling, hence these are presented in two graphs. Notes:  (i) 

bars at t=0 represent the ‘establishment stage’ after about 1 hr of growth where the bacteria are 

introduced into the experiments. 
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Figure 5: Enumeration of P. fluorescens populations (expressed as CFUs/mL) for the controls 

and for exposure to PEMF by devices D & G under (a) low flow rate (92 mL/min) (b) high 

flow rate (460 mL/min).  Experiments were performed separately on different dates and the 

error bars are standard errors for three replicate plating. Bars at t=0 represent the ‘establishment 

stage’ after about 1 hr of growth where the bacteria are introduced into the experiments, note 

that for these bars there is no PEMF. 
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