555 research outputs found

    Active interoceptive inference and the emotional brain

    Get PDF
    We review a recent shift in conceptions of interoception and its relationship to hierarchical inference in the brain. The notion of interoceptive inference means that bodily states are regulated by autonomic reflexes that are enslaved by descending predictions from deep generative models of our internal and external milieu. This re-conceptualization illuminates several issues in cognitive and clinical neuroscience with implications for experiences of selfhood and emotion. We first contextualize interoception in terms of active (Bayesian) inference in the brain, highlighting its enactivist (embodied) aspects. We then consider the key role of uncertainty or precision and how this might translate into neuromodulation. We next examine the implications for understanding the functional anatomy of the emotional brain, surveying recent observations on agranular cortex. Finally, we turn to theoretical issues, namely, the role of interoception in shaping a sense of embodied self and feelings. We will draw links between physiological homoeostasis and allostasis, early cybernetic ideas of predictive control and hierarchical generative models in predictive processing. The explanatory scope of interoceptive inference ranges from explanations for autism and depression, through to consciousness. We offer a brief survey of these exciting developments

    The UK market for energy service contracts in 2014–2015

    Get PDF
    This paper provides an overview of the UK market for energy service contracts in 2014 and highlights the growing role of intermediaries. Using information from secondary literature and interviews, it identifies the businesses offering energy service contracts, the sectors and organisations that are purchasing those contracts, the types of contract that are available, the areas of market growth and the reasons for that growth. The paper finds that the UK market is relatively large, highly diverse, concentrated in particular sectors and types of site and overwhelmingly focused upon established technologies with high rates of return. A major driver is the emergence of procurement frameworks for energy service contracts in the public sector. These act as intermediaries between clients and contractors, thereby lowering transaction costs and facilitating learning. The market is struggling to become established in commercial offices, largely as a result of split incentives, and is unlikely to develop further in this sector without different business models, tenancy arrangements and policy initiatives. Overall, the paper concludes that energy service contracts can play an important role in the transition to a low-carbon economy, especially when supported by intermediaries, but their potential is still limited by high transaction costs

    A Markovian event-based framework for stochastic spiking neural networks

    Full text link
    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks

    Protein profiling in hepatocellular carcinoma by label-free quantitative proteomics in two west african populations.

    Get PDF
    Background Hepatocellular Carcinoma is the third most common cause of cancer related death worldwide, often diagnosed by measuring serum AFP; a poor performance stand-alone biomarker. With the aim of improving on this, our study focuses on plasma proteins identified by Mass Spectrometry in order to investigate and validate differences seen in the respective proteomes of controls and subjects with LC and HCC. Methods Mass Spectrometry analysis using liquid chromatography electro spray ionization quadrupole time-of-flight was conducted on 339 subjects using a pooled expression profiling approach. ELISA assays were performed on four significantly differentially expressed proteins to validate their expression profiles in subjects from the Gambia and a pilot group from Nigeria. Results from this were collated for statistical multiplexing using logistic regression analysis. Results Twenty-six proteins were identified as differentially expressed between the three subject groups. Direct measurements of four; hemopexin, alpha-1-antitrypsin, apolipoprotein A1 and complement component 3 confirmed their change in abundance in LC and HCC versus control patients. These trends were independently replicated in the pilot validation subjects from Nigeria. The statistical multiplexing of these proteins demonstrated performance comparable to or greater than ALT in identifying liver cirrhosis or carcinogenesis. This exercise also proposed preliminary cut offs with achievable sensitivity, specificity and AUC statistics greater than reported AFP averages. Conclusions The validated changes of expression in these proteins have the potential for development into high-performance tests usable in the diagnosis and or monitoring of HCC and LC patients. The identification of sustained expression trends strengthens the suggestion of these four proteins as worthy candidates for further investigation in the context of liver disease. The statistical combinations also provide a novel inroad of analyses able to propose definitive cut-offs and combinations for evaluation of performance

    Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease

    Get PDF
    Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting

    Axons Amplify Somatic Incomplete Spikes into Uniform Amplitudes in Mouse Cortical Pyramidal Neurons

    Get PDF
    BACKGROUND: Action potentials are the essential unit of neuronal encoding. Somatic sequential spikes in the central nervous system appear various in amplitudes. To be effective neuronal codes, these spikes should be propagated to axonal terminals where they activate the synapses and drive postsynaptic neurons. It remains unclear whether these effective neuronal codes are based on spike timing orders and/or amplitudes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated this fundamental issue by simultaneously recording the axon versus soma of identical neurons and presynaptic vs. postsynaptic neurons in the cortical slices. The axons enable somatic spikes in low amplitude be enlarged, which activate synaptic transmission in consistent patterns. This facilitation in the propagation of sequential spikes through the axons is mechanistically founded by the short refractory periods, large currents and high opening probability of axonal voltage-gated sodium channels. CONCLUSION/SIGNIFICANCE: An amplification of somatic incomplete spikes into axonal complete ones makes sequential spikes to activate consistent synaptic transmission. Therefore, neuronal encoding is likely based on spike timing order, instead of graded analogues

    Linear-time protein 3-D structure searching with insertions and deletions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two biomolecular 3-D structures are said to be similar if the RMSD (root mean square deviation) between the two molecules' sequences of 3-D coordinates is less than or equal to some given constant bound. Tools for searching for similar structures in biomolecular 3-D structure databases are becoming increasingly important in the structural biology of the post-genomic era.</p> <p>Results</p> <p>We consider an important, fundamental problem of reporting all substructures in a 3-D structure database of chain molecules (such as proteins) which are similar to a given query 3-D structure, with consideration of indels (<it>i.e.</it>, insertions and deletions). This problem has been believed to be very difficult but its exact computational complexity has not been known. In this paper, we first prove that the problem in unbounded dimensions is NP-hard. We then propose a new algorithm that dramatically improves the average-case time complexity of the problem in 3-D in case the number of indels <it>k </it>is bounded by a constant. Our algorithm solves the above problem for a query of size <it>m </it>and a database of size <it>N </it>in average-case <it>O</it>(<it>N</it>) time, whereas the time complexity of the previously best algorithm was <it>O</it>(<it>Nm</it><sup><it>k</it>+1</sup>).</p> <p>Conclusions</p> <p>Our results show that although the problem of searching for similar structures in a database based on the RMSD measure with indels is NP-hard in the case of unbounded dimensions, it can be solved in 3-D by a simple average-case linear time algorithm when the number of indels is bounded by a constant.</p

    VEGF Promotes Malaria-Associated Acute Lung Injury in Mice

    Get PDF
    The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies
    corecore