2,020 research outputs found

    A neural surveyor to map touch on the body

    Get PDF
    Perhaps the most recognizable sensory map in all of neuroscience is the somatosensory homunculus. Although it seems straightforward, this simple representation belies the complex link between an activation in a somatotopic map and the associated touch location on the body. Any isolated activation is spatially ambiguous without a neural decoder that can read its position within the entire map, but how this is computed by neural networks is unknown. We propose that the somatosensory system implements multilateration, a common computation used by surveying and global positioning systems to localize objects. Specifically, to decode touch location on the body, multilateration estimates the relative distance between the afferent input and the boundaries of a body part (e.g., the joints of a limb). We show that a simple feedforward neural network, which captures several fundamental receptive field properties of cortical somatosensory neurons, can implement a Bayes-optimal multilateral computation. Simulations demonstrated that this decoder produced a pattern of localization variability between two boundaries that was unique to multilateration. Finally, we identify this computational signature of multilateration in actual psychophysical experiments, suggesting that it is a candidate computational mechanism underlying tactile localization

    A glimpse into Thurston's work

    Full text link
    We present an overview of some significant results of Thurston and their impact on mathematics. The final version of this paper will appear as Chapter 1 of the book "In the tradition of Thurston: Geometry and topology", edited by K. Ohshika and A. Papadopoulos (Springer, 2020)

    Psychological determinants of whole-body endurance performance

    Get PDF
    Background: No literature reviews have systematically identified and evaluated research on the psychological determinants of endurance performance, and sport psychology performance-enhancement guidelines for endurance sports are not founded on a systematic appraisal of endurance-specific research. Objective: A systematic literature review was conducted to identify practical psychological interventions that improve endurance performance and to identify additional psychological factors that affect endurance performance. Additional objectives were to evaluate the research practices of included studies, to suggest theoretical and applied implications, and to guide future research. Methods: Electronic databases, forward-citation searches, and manual searches of reference lists were used to locate relevant studies. Peer-reviewed studies were included when they chose an experimental or quasi-experimental research design, a psychological manipulation, endurance performance as the dependent variable, and athletes or physically-active, healthy adults as participants. Results: Consistent support was found for using imagery, self-talk, and goal setting to improve endurance performance, but it is unclear whether learning multiple psychological skills is more beneficial than learning one psychological skill. The results also demonstrated that mental fatigue undermines endurance performance, and verbal encouragement and head-to-head competition can have a beneficial effect. Interventions that influenced perception of effort consistently affected endurance performance. Conclusions: Psychological skills training could benefit an endurance athlete. Researchers are encouraged to compare different practical psychological interventions, to examine the effects of these interventions for athletes in competition, and to include a placebo control condition or an alternative control treatment. Researchers are also encouraged to explore additional psychological factors that could have a negative effect on endurance performance. Future research should include psychological mediating variables and moderating variables. Implications for theoretical explanations of endurance performance and evidence-based practice are described

    Human immunodeficiency virus seroconversion presenting with acute inflammatory demyelinating polyneuropathy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute Human Immunodeficiency Virus infection is associated with a range of neurological conditions. Guillain-Barré syndrome is a rare presentation; acute inflammatory demyelinating polyneuropathy is the commonest form of Guillain-Barré syndrome. Acute inflammatory demyelinating polyneuropathy has occasionally been reported in acute Immunodeficiency Virus infection but little data exists on frequency, management and outcome.</p> <p>Case presentation</p> <p>We describe an episode of Guillain-Barré syndrome presenting as acute inflammatory demyelinating polyneuropathy in a 30-year-old man testing positive for Immunodeficiency Virus, probably during acute seroconversion. Clinical suspicion was confirmed by cerebrospinal fluid analysis and nerve conduction studies. Rapid clinical deterioration prompted intravenous immunoglobulin therapy and early commencement of highly active anti-retroviral therapy. All symptoms resolved within nine weeks.</p> <p>Conclusion</p> <p>Unusual neurological presentations in previously fit patients are an appropriate indication for Immunodeficiency-Virus testing. Highly active anti-retroviral therapy with adequate penetration of the central nervous system should be considered as an early intervention, alongside conventional therapies such as intravenous immunoglobulin.</p

    Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation

    Get PDF
    The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts

    Pain assessment for people with dementia: a systematic review of systematic reviews of pain assessment tools.

    Get PDF
    BACKGROUND: There is evidence of under-detection and poor management of pain in patients with dementia, in both long-term and acute care. Accurate assessment of pain in people with dementia is challenging and pain assessment tools have received considerable attention over the years, with an increasing number of tools made available. Systematic reviews on the evidence of their validity and utility mostly compare different sets of tools. This review of systematic reviews analyses and summarises evidence concerning the psychometric properties and clinical utility of pain assessment tools in adults with dementia or cognitive impairment. METHODS: We searched for systematic reviews of pain assessment tools providing evidence of reliability, validity and clinical utility. Two reviewers independently assessed each review and extracted data from them, with a third reviewer mediating when consensus was not reached. Analysis of the data was carried out collaboratively. The reviews were synthesised using a narrative synthesis approach. RESULTS: We retrieved 441 potentially eligible reviews, 23 met the criteria for inclusion and 8 provided data for extraction. Each review evaluated between 8 and 13 tools, in aggregate providing evidence on a total of 28 tools. The quality of the reviews varied and the reporting often lacked sufficient methodological detail for quality assessment. The 28 tools appear to have been studied in a variety of settings and with varied types of patients. The reviews identified several methodological limitations across the original studies. The lack of a 'gold standard' significantly hinders the evaluation of tools' validity. Most importantly, the samples were small providing limited evidence for use of any of the tools across settings or populations. CONCLUSIONS: There are a considerable number of pain assessment tools available for use with the elderly cognitive impaired population. However there is limited evidence about their reliability, validity and clinical utility. On the basis of this review no one tool can be recommended given the existing evidence

    Altered Neural and Behavioral Dynamics in Huntington's Disease: An Entropy Conservation Approach

    Get PDF
    Background: Huntington’s disease (HD) is an inherited condition that results in neurodegeneration of the striatum, the forebrain structure that processes cortical information for behavioral output. In the R6/2 transgenic mouse model of HD, striatal neurons exhibit aberrant firing patterns that are coupled with reduced flexibility in the motor system. The aim of this study was to test the patterns of unpredictability in brain and behavior in wild-type (WT) and R6/2 mice. Methodology/Principal Findings: Striatal local field potentials (LFP) were recorded from 18 WT and 17 R6/2 mice (aged 8– 11 weeks) while the mice were exploring a plus-shaped maze. We targeted LFP activity for up to 2 s before and 2 s after each choice-point entry. Approximate Entropy (ApEn) was calculated for LFPs and Shannon Entropy was used to measure the probability of arm choice, as well as the likelihood of making consecutive 90-degree turns in the maze. We found that although the total number of choice-point crossings and entropy of arm-choice probability was similar in both groups, R6/2 mice had more predictable behavioral responses (i.e., were less likely to make 90-degree turns and perform them in alternation with running straight down the same arm), while exhibiting more unpredictable striatal activity, as indicated by higher ApEn values. In both WT and R6/2 mice, however, behavioral unpredictability was negatively correlated with LFP ApEn. Conclusions/Significance: HD results in a perseverative exploration of the environment, occurring in concert with mor

    Modeling Routes of Chronic Wasting Disease Transmission: Environmental Prion Persistence Promotes Deer Population Decline and Extinction

    Get PDF
    Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R0, may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress
    corecore