24 research outputs found

    A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy

    Get PDF
    Prostate cancer (PCa) is the second leading cause of cancer deaths in men in the United States. The prostate-specific antigen (PSA), often found at high levels in the serum of PCa patients, has been used as a marker for PCa detection and as a target of immunotherapy. The murine IgG1 monoclonal antibody AR47.47, specific for human PSA, has been shown to enhance antigen presentation by human dendritic cells and induce both CD4 andCD8 T-cell activation when complexed with PSA. In this study, we explored the properties of a novel mouse/human chimeric anti-PSA IgE containing the variable regions of AR47.47 as a potential therapy for PCa. Our goal was to take advantage of the unique properties of IgE in order to trigger immune activation against PCa.Fil: Daniels-Wells, Tracy R. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Helguera, Gustavo Fernando. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Departamento de Tecnologia Farmaceutica; Argentina; University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Leuchter, Richard K. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Quintero, Rafael. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Kozman, Maggie. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Rodríguez, José A.. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; University of California. The Molecular Biology Institute; Estados Unidos de América;Fil: Ortiz-Sánchez, E. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; Biomedical Research in Cancer. Basic Research Division. National Institute of Cancerology; Mexico.;Fil: Martínez-Maza, Otonel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Schultes, Brigit C.. Advanced Immune Therapeutics; Estados Unidos de América;Fil: Nicodemus Christopher. Advanced Immune Therapeutics; Estados Unidos de América;Fil: Penichet, Manuel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; University of California. The Molecular Biology Institute; Estados Unidos de América

    Modelling mammalian energetics: the heterothermy problem

    Get PDF
    Global climate change is expected to have strong effects on the world’s flora and fauna. As a result, there has been a recent increase in the number of meta-analyses and mechanistic models that attempt to predict potential responses of mammals to changing climates. Many models that seek to explain the effects of environmental temperatures on mammalian energetics and survival assume a constant body temperature. However, despite generally being regarded as strict homeotherms, mammals demonstrate a large degree of daily variability in body temperature, as well as the ability to reduce metabolic costs either by entering torpor, or by increasing body temperatures at high ambient temperatures. Often, changes in body temperature variability are unpredictable, and happen in response to immediate changes in resource abundance or temperature. In this review we provide an overview of variability and unpredictability found in body temperatures of extant mammals, identify potential blind spots in the current literature, and discuss options for incorporating variability into predictive mechanistic models

    Spontaneous Atopic Dermatitis-Like Symptoms in a/a ma ft/ma ft/J Flaky Tail Mice Appear Early after Birth.

    Get PDF
    Loss-of-function mutations in human profilaggrin gene have been identified as the cause of ichthyosis vulgaris (IV), and as a major predisposition factor for atopic dermatitis (AD). Similarly, flaky tail (a/a ma ft/ma ft/J) mice were described as a model for IV, and shown to be predisposed to eczema. The aim of this study was to correlate the flaky tail mouse phenotype with human IV and AD, in order to dissect early molecular events leading to atopic dermatitis in mice and men, suffering from filaggrin deficiency. Thus, 5-days old flaky tail pups were analyzed histologically, expression of cytokines was measured in skin and signaling pathways were investigated by protein analysis. Human biopsies of IV and AD patients were analyzed histologically and by real time PCR assays. Our data show acanthosis and hyperproliferation in flaky tail epidermis, associated with increased IL1β and thymic stromal lymphopoietin (TSLP) expression, and Th2-polarization. Consequently, NFκB and Stat pathways were activated, and IL6 mRNA levels were increased. Further, quantitative analysis of late epidermal differentiation markers revealed increased Small proline-rich protein 2A (Sprr2a) synthesis. Th2-polarization and Sprr2a increase may result from high TSLP expression, as shown after analysis of 5-days old K14-TSLP tg mouse skin biopsies. Our findings in the flaky tail mouse correlate with data obtained from patient biopsies of AD, but not IV. We propose that proinflammatory cytokines are responsible for acanthosis in flaky tail epidermis, and together with the Th2-derived cytokines lead to morphological changes. Accordingly, the a/a ma ft/ma ft/J mouse model can be used as an appropriate model to study early AD onset associated with profilaggrin deficiency
    corecore