50 research outputs found

    QUANTIZATION OF A CLASS OF PIECEWISE AFFINE TRANSFORMATIONS ON THE TORUS

    Full text link
    We present a unified framework for the quantization of a family of discrete dynamical systems of varying degrees of "chaoticity". The systems to be quantized are piecewise affine maps on the two-torus, viewed as phase space, and include the automorphisms, translations and skew translations. We then treat some discontinuous transformations such as the Baker map and the sawtooth-like maps. Our approach extends some ideas from geometric quantization and it is both conceptually and calculationally simple.Comment: no. 28 pages in AMSTE

    Football in the community schemes: Exploring the effectiveness of an intervention in promoting healthful behaviour change

    Get PDF
    This study aims to examine the effectiveness of a Premier League football club’s Football in the Community (FitC) schemes intervention in promoting positive healthful behaviour change in children. Specifically, exploring the effectiveness of this intervention from the perspectives of the participants involved (i.e. the researcher, teachers, children and coaches). A range of data collection techniques were utilized including the principles of ethnography (i.e. immersion, engagement and observations), alongside conducting focus groups with the children. The results allude to the intervention merely ‘keeping active children active’ via (mostly) fun, football sessions. Results highlight the important contribution the ‘coach’ plays in the effectiveness of the intervention. Results relating to working practice (i.e. coaching practice and coach recruitment) are discussed and highlighted as areas to be addressed. FitC schemes appear to require a process of positive organizational change to increase their effectiveness in strategically attending to the health agenda

    Bergman Kernel from Path Integral

    Full text link
    We rederive the expansion of the Bergman kernel on Kahler manifolds developed by Tian, Yau, Zelditch, Lu and Catlin, using path integral and perturbation theory, and generalize it to supersymmetric quantum mechanics. One physics interpretation of this result is as an expansion of the projector of wave functions on the lowest Landau level, in the special case that the magnetic field is proportional to the Kahler form. This is relevant for the quantum Hall effect in curved space, and for its higher dimensional generalizations. Other applications include the theory of coherent states, the study of balanced metrics, noncommutative field theory, and a conjecture on metrics in black hole backgrounds. We give a short overview of these various topics. From a conceptual point of view, this expansion is noteworthy as it is a geometric expansion, somewhat similar to the DeWitt-Seeley-Gilkey et al short time expansion for the heat kernel, but in this case describing the long time limit, without depending on supersymmetry.Comment: 27 page

    Toeplitz Quantization of K\"ahler Manifolds and gl(N)gl(N) NN\to\infty

    Full text link
    For general compact K\"ahler manifolds it is shown that both Toeplitz quantization and geometric quantization lead to a well-defined (by operator norm estimates) classical limit. This generalizes earlier results of the authors and Klimek and Lesniewski obtained for the torus and higher genus Riemann surfaces, respectively. We thereby arrive at an approximation of the Poisson algebra by a sequence of finite-dimensional matrix algebras gl(N)gl(N), NN\to\infty.Comment: 17 pages, AmsTeX 2.1, Sept. 93 (rev: only typos are corrected

    The Topological B-model on a Mini-Supertwistor Space and Supersymmetric Bogomolny Monopole Equations

    Full text link
    In the recent paper hep-th/0502076, it was argued that the open topological B-model whose target space is a complex (2|4)-dimensional mini-supertwistor space with D3- and D1-branes added corresponds to a super Yang-Mills theory in three dimensions. Without the D1-branes, this topological B-model is equivalent to a dimensionally reduced holomorphic Chern-Simons theory. Identifying the latter with a holomorphic BF-type theory, we describe a twistor correspondence between this theory and a supersymmetric Bogomolny model on R^3. The connecting link in this correspondence is a partially holomorphic Chern-Simons theory on a Cauchy-Riemann supermanifold which is a real one-dimensional fibration over the mini-supertwistor space. Along the way of proving this twistor correspondence, we review the necessary basic geometric notions and construct action functionals for the involved theories. Furthermore, we discuss the geometric aspect of a recently proposed deformation of the mini-supertwistor space, which gives rise to mass terms in the supersymmetric Bogomolny equations. Eventually, we present solution generating techniques based on the developed twistorial description together with some examples and comment briefly on a twistor correspondence for super Yang-Mills theory in three dimensions.Comment: 55 pages; v2: typos fixed, published versio

    Coherent States for Quantum Compact Groups

    Full text link
    Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the qq--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}Comment: 25 page

    Gravity, Twistors and the MHV Formalism

    Full text link
    We give a self-contained derivation of the MHV amplitudes for gravity and use the associated twistor generating function to define a twistor action for the MHV diagram approach to gravity. Starting from a background field calculation on a spacetime with anti self-dual curvature, we obtain a simple spacetime formula for the scattering of a single, positive helicity linearized graviton into one of negative helicity. Re-expressing our integral in terms of twistor data allows us to consider a spacetime that is asymptotic to a superposition of plane waves. Expanding these out perturbatively yields the gravitational MHV amplitudes of Berends, Giele & Kuijf. We go on to take the twistor generating function off-shell at the perturbative level. Combining this with a twistor action for the anti self-dual background, we obtain a twistor action for the MHV diagram approach to perturbative gravity. We finish by extending these results to supergravity, in particular N=4 and N=8.Comment: 39 pages, 3 figures. Minor typos corrected, some clarification adde

    Which outcomes are most important to measure in patients with COVID-19 and how and when should these be measured? Development of an international standard set of outcomes measures for clinical use in patients with COVID-19: a report of the International Consortium for Health Outcomes Measurement (ICHOM) COVID-19 Working Group

    Get PDF
    Objectives: The COVID-19 pandemic has resulted in widespread morbidity and mortality with the consequences expected to be felt for many years. Significant variation exists in the care even of similar patients with COVID-19, including treatment practices within and between institutions. Outcome measures vary among clinical trials on the same therapies. Understanding which therapies are of most value is not possible unless consensus can be reached on which outcomes are most important to measure. Furthermore, consensus on the most important outcomes may enable patients to monitor and track their care, and may help providers to improve the care they offer through quality improvement. To develop a standardised minimum set of outcomes for clinical care, the International Consortium for Health Outcomes Measurement (ICHOM) assembled a working group (WG) of 28 volunteers, including health professionals, patients and patient representatives. Design: A list of outcomes important to patients and professionals was generated from a systematic review of the published literature using the MEDLINE database, from review of outcomes being measured in ongoing clinical trials, from a survey distributed to patients and patient networks, and from previously published ICHOM standard sets in other disease areas. Using an online-modified Delphi process, the WG selected outcomes of greatest importance. Results: The outcomes considered by the WG to be most important were selected and categorised into five domains: (1) functional status and quality of life, (2) mental functioning, (3) social functioning, (4) clinical outcomes and (5) symptoms. The WG identified demographic and clinical variables for use as case-mix risk adjusters. These included baseline demographics, clinical factors and treatment-related factors. Conclusion: Implementation of these consensus recommendations could help institutions to monitor, compare and improve the quality and delivery of care to patients with COVID-19. Their consistent definition and collection could also broaden the implementation of more patient-centric clinical outcomes research

    Approaches to automated data selection for global seismic tomography

    No full text
    The ability to handle large amounts of data automatically is essential for any major tomographic inversion. As part of this process, it is necessary to differentiate between high-quality seismograms, and those that are unusable due to noise or other errors. This quality assessment is traditionally made visually; however, the sheer quantity of data in a modern tomographic data set makes this approach unfeasible. It is therefore necessary to develop techniques for automating this quality assessment process.We demonstrate that a simple neural network, trained to recognize the frequency-domain characteristics of high- and low-quality data, can successfully distinguish the two classes in unseen data. We demonstrate that the resulting clean data sets are of sufficient quality to allow full-waveform determination of event focal mechanisms and hypocentral parameters.The process we outline allows the rapid creation of a high-quality data set for seismic tomography. Depending on application, this may be suitable for use without further refinement. In some circumstances, a further visual inspection may remain desirable to ensure the data set is noise-free; however, a significant benefit will still derive from the reduction in number of traces to be examined. This will enable full-waveform inversion using significantly larger data sets than has hitherto been possible. The selection strategy relies only on measurements made from the seismogram, and on rough estimates of hypocentral location-the final data set does not depend on any a priori assumptions regarding earth structure or wave propagation.Our focus has been on data selection for seismic tomography, but the approach is general and may find application across a wide range of seismic investigations. An automated system is of interest wherever large data sets must be handled, or where time is of the essence-such as in earthquake hazard assessment. © 2010 The Authors Journal compilation © 2010 RAS
    corecore