In the recent paper hep-th/0502076, it was argued that the open topological
B-model whose target space is a complex (2|4)-dimensional mini-supertwistor
space with D3- and D1-branes added corresponds to a super Yang-Mills theory in
three dimensions. Without the D1-branes, this topological B-model is equivalent
to a dimensionally reduced holomorphic Chern-Simons theory. Identifying the
latter with a holomorphic BF-type theory, we describe a twistor correspondence
between this theory and a supersymmetric Bogomolny model on R^3. The connecting
link in this correspondence is a partially holomorphic Chern-Simons theory on a
Cauchy-Riemann supermanifold which is a real one-dimensional fibration over the
mini-supertwistor space. Along the way of proving this twistor correspondence,
we review the necessary basic geometric notions and construct action
functionals for the involved theories. Furthermore, we discuss the geometric
aspect of a recently proposed deformation of the mini-supertwistor space, which
gives rise to mass terms in the supersymmetric Bogomolny equations. Eventually,
we present solution generating techniques based on the developed twistorial
description together with some examples and comment briefly on a twistor
correspondence for super Yang-Mills theory in three dimensions.Comment: 55 pages; v2: typos fixed, published versio