782 research outputs found
Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600K determined by time-of-flight neutron powder diffraction
The cementite phase of Fe3C has been studied by high-resolution neutron powder diffraction at 4.2 K and at 20 K intervals between 20 and 600 K. The crystal structure remains orthorhombic (Pnma) throughout, with the fractional coordinates of all atoms varying only slightly (the magnetic structure of the ferromagnetic phase could not be determined). The ferromagnetic phase transition, with Tc 480 K, greatly affects the thermal expansion coefficient of the material. The average volumetric coefficient of thermal expansion above Tc was found to be 4.1 (1) × 10-5 K-1; below Tc it is considerably lower (< 1.8 × 10-5 K-1) and varies greatly with temperature. The behaviour of the volume over the full temperature range of the experiment may be modelled by a third-order Grüneisen approximation to the zero-pressure equation of state, combined with a magnetostrictive correction based on mean-field theory
Evaluation of two lyophilized molecular assays to rapidly detect foot-and-mouth disease virus directly from clinical samples in field settings
Accurate, timely diagnosis is essential for the control, monitoring and eradication of foot‐and‐mouth disease (FMD). Clinical samples from suspect cases are normally tested at reference laboratories. However, transport of samples to these centralized facilities can be a lengthy process that can impose delays on critical decision making. These concerns have motivated work to evaluate simple‐to‐use technologies, including molecular‐based diagnostic platforms, that can be deployed closer to suspect cases of FMD. In this context, FMD virus (FMDV)‐specific reverse transcription loop‐mediated isothermal amplification (RT‐LAMP) and real‐time RT‐PCR (rRT‐PCR) assays, compatible with simple sample preparation methods and in situ visualization, have been developed which share equivalent analytical sensitivity with laboratory‐based rRT‐PCR. However, the lack of robust ‘ready‐to‐use kits’ that utilize stabilized reagents limits the deployment of these tests into field settings. To address this gap, this study describes the performance of lyophilized rRT‐PCR and RT‐LAMP assays to detect FMDV. Both of these assays are compatible with the use of fluorescence to monitor amplification in real‐time, and for the RT‐LAMP assays end point detection could also be achieved using molecular lateral flow devices. Lyophilization of reagents did not adversely affect the performance of the assays. Importantly, when these assays were deployed into challenging laboratory and field settings within East Africa they proved to be reliable in their ability to detect FMDV in a range of clinical samples from acutely infected as well as convalescent cattle. These data support the use of highly sensitive molecular assays into field settings for simple and rapid detection of FMDV
Theoretical study of incoherent phi photoproduction on a deuteron target
We study the photoproduction of phi mesons in deuteron, paying attention to
the modification of the cross section from bound protons to the free ones with
the aim of comparing with recent results at LEPS. For this purpose we take into
account Fermi motion in single scattering and rescattering of the phi to
account for phi absorption on a second nucleon as well as the rescattering of
the proton. We find that the contribution of the double scattering is much
smaller than the typical cross section of gamma p to phi p in free space, which
implies a very small screening of the phi production in deuteron. The
contribution from the proton rescattering, on the other hand, is found to be
not negligible compared to the cross section of gamma p to phi p in free space,
and leads to a moderate reduction of the phi photoproduction cross section on a
deuteron at forward angles if LEPS set up is taken into account. The Fermi
motion allows contribution of the single scattering in regions forbidden by
phase space in the free case. In particular, we find that for momentum
transferred squared close to the maximum value, the Fermi motion changes
drastically the shape of d sigma / dt, to the point that the ratio of this
cross section to the free one becomes very sensitive to the precise value of t
chosen, or the size of the bin used in an experimental analysis. Hence, this
particular region of t does not seem the most indicated to find effects of a
possible phi absorption in the deuteron. This reaction is studied theoretically
as a function of t and the effect of the experimental angular cuts at LEPS is
also discussed, providing guidelines for future experimental analyses of the
reaction.Comment: 17 pages, 16 figure
Energy for a Shared Development Agenda: Global Scenarios and Governance Implications
This report combines a global assessment of energy scenarios up to 2050, case studies of energy access and low-carbon efforts around the world, and a review of the technological shifts, investments, policies and governance structures needed to bring energy to all.
How can the world meet energy needs for human and economic development in a way that is compatible with sustainable development? What is required is nothing less than a massive transformation of energy systems and rapid turnovers of infrastructure and technology, all of which must be achieved while staying within climate and resource constraints.
Though the challenge is great, the energy and sustainability scenarios in this report show that it can be met. However, while these scenarios sketch out transformation pathways in broad strokes, the devil is in the detail. This study also explores how to successfully implement change, via case studies of energy transformation and reviews of policy mechanisms and governance frameworks.
Over the coming decade, policymakers around the world need to build a shared development agenda to address these challenges. It is hoped that this study will help to lay the foundations for such an effort
Coherent Photoproduction of pi^+ from 3^He
We have measured the differential cross section for the
He reaction. This reaction was studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons
produced with the Hall-B bremsstrahlung tagging system in the energy range from
0.50 to 1.55 GeV were incident on a cryogenic liquid He target. The
differential cross sections for the He
reaction were measured as a function of photon-beam energy and pion-scattering
angle. Theoretical predictions to date cannot explain the large cross sections
except at backward angles, showing that additional components must be added to
the model.Comment: 11 pages, 16 figure
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
A Bayesian analysis of pentaquark signals from CLAS data
We examine the results of two measurements by the CLAS collaboration, one of
which claimed evidence for a pentaquark, whilst the other found no
such evidence. The unique feature of these two experiments was that they were
performed with the same experimental setup. Using a Bayesian analysis we find
that the results of the two experiments are in fact compatible with each other,
but that the first measurement did not contain sufficient information to
determine unambiguously the existence of a . Further, we suggest a
means by which the existence of a new candidate particle can be tested in a
rigorous manner.Comment: 5 pages, 3 figure
Contrasting phylogeographic structures between freshwater lycopods and angiosperms in the British Isles
Aquatic plants face many novel challenges compared to their terrestrial counterparts. The habitat they occupy is typically highly fragmented, with isolated water bodies surrounded by swathes of “dry desert”. This can result in reduced gene flow, inbreeding, and potentially local extinction. The level of gene flow and degree of genetic structure in these species is also likely to be influenced by the mating system they adopt. To test this hypothesis we compare the phylogeographic structure of two freshwater plants in the British Isles, the largely clonal angiosperm Littorella uniflora, and the heterosporous lycopod Isoetes lacustris. We sampled both plants from lakes where they co-occur, and used restriction site-associated DNA sequencing (RAD-Seq) to infer their relationships. Genetic structure among lakes is higher in the angiosperm, which we associate with reduced sexual reproduction, and hence lower levels of gene flow between lakes. Furthermore, we found evidence of lineage-specific association to certain lake nutrient types in L. uniflora, which might result from environmental filtering of specific ecotypes. Overall, we conclude that the reproductive system of lycopods, which is less specialized to terrestrial conditions, provides an advantage following the secondary colonization of aquatic habitats by enabling frequent genetic exchanges between populations and potentially facilitating faster adaptation
Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV
The three-body photodisintegration of 3He has been measured with the CLAS
detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV
and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first
time to cover a wide momentum and angular range for the two outgoing protons.
Three kinematic regions dominated by either two- or three-body contributions
have been distinguished and analyzed. The measured cross sections have been
compared with results of a theoretical model, which, in certain kinematic
ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications:
removed 2 figures, improvements on others, a few minor modifications to the
tex
eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV
Differential cross sections for the reaction gamma p -> eta-prime p have been
measured with the CLAS spectrometer and a tagged photon beam with energies from
1.527 to 2.227 GeV. The results reported here possess much greater accuracy
than previous measurements. Analyses of these data indicate for the first time
the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710)
resonances, known to couple strongly to the eta N channel in photoproduction on
the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure
- …
